Advanced SearchSearch Tips
Real-time Footstep Planning and Following for Navigation of Humanoid Robots
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Real-time Footstep Planning and Following for Navigation of Humanoid Robots
Hong, Young-Dae;
  PDF(new window)
This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.
Humanoid robot;Footstep planning;Uni-vector field navigation method;Binary search algorithm;Footstep following;Modifiable walking pattern;
 Cited by
Dynamic Simulation of Modifiable Bipedal Walking on Uneven Terrain with Unknown Height,;;

Journal of Electrical Engineering and Technology, 2016. vol.11. 3, pp.733-740 crossref(new window)
Dynamic Simulation of Modifiable Bipedal Walking on Uneven Terrain with Unknown Height, Journal of Electrical Engineering and Technology, 2016, 11, 3, 733  crossref(new windwow)
Stable Walking of Humanoid Robots Using Vertical Center of Mass and Foot Motions by an Evolutionary Optimized Central Pattern Generator, International Journal of Advanced Robotic Systems, 2016, 13, 1, 27  crossref(new windwow)
M. Yagi and V. Lumelsky, “Biped robot locomotion in scenes with unknown obstacles,” in Proc. IEEE Int. Conf. Robot. Autom., 1999, pp. 375-380.

E. T. Wong and R. Jarvis, “Real time obstacle detection and navigation planning for a humanoid robot in an indoor environment,” in Proc. IEEE Conf. Robot. Autom. Mechatron., 2004, pp. 693-698.

J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade, “Footstep planning for the honda asimo humanoid,” in Proc. IEEE Int. Conf. Robot. Autom., 2005, pp. 629-634.

J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, and S. Kagami, “An intelligent joystick for biped control,” in Proc. IEEE Int. Conf. Robot. Autom., 2006, pp. 860-865.

Z. Xia, J. Xiong, and K. Chen, “Parameter self-adaptation in biped navigation employing nonuniform randomized footstep planner,” Robotica, vol. 28, no. 6, pp. 929-936, Oct. 2010. crossref(new window)

Z. Xia, J. Xiong, and K. Chen, “Global navigation for humanoid robots using sampling-based footstep planners,” IEEE/ASME Trans. Mechtron., vol. 16, no.4, pp. 716-723, Aug. 2011. crossref(new window)

N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast humanoid robot collision-free footstep planning using swept volume approximations,” IEEE Trans. Robot., vol. 28, no. 2, pp. 427-439, Apr. 2012. crossref(new window)

Y.-D. Hong, Y.-H. Kim, J.-H. Han, J.-K. Yoo, and J. -H. Kim, “Evolutionary multiobjective footstep planning for humanoid robots,” IEEE Trans. Syst. Man. Cybern. C, Appl. Rev., vol. 41, no. 4, pp. 520-532, Jul. 2011. crossref(new window)

Y. -D. Hong and J. -H. Kim, “An evolutionary optimized footstep planner for the navigation of humanoid robots,” Int. J. Humanoid Robot., vol. 9, no. 1, Mar. 2012.

Y.-J. Kim, J.-H. Kim, and D.-S. Kwon, “Evolutionary programming based univector field navigation method for fast mobile robots,” IEEE Trans. Syst., Man,Cybern. B, Cybern., vol. 31, no. 3, pp. 450-458, Jun. 2001. crossref(new window)

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, “A realtime pattern generator for biped walking,” in Proc. IEEE Int. Conf.Robot. Autom., 2002, vol. 1, pp. 31-37.

B.-J. Lee, D. Stonier, Y.-D. Kim, J.-K. Yoo, and J.-H. Kim, “Modifiable walking pattern of a humanoid robot by using allowable ZMP variation,” IEEE Trans. Robot., vol. 24, no. 4, pp. 917-925, Apr. 2008. crossref(new window)

Y.-D. Hong, B.-J. Lee, and J.-H. Kim, “Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots,” IEEE/ASME Trans. Mechatron.,vol. 16, no. 4, pp. 783-789, Aug. 2011. crossref(new window)

Y.-D. Hong and J.-H. Kim, “3-D command state-based modifiable bipedal walking on uneven terrain,” IEEE/ASME Trans. Mechatron., vol. 18, no. 2, pp.657-663, Apr. 2013. crossref(new window)

O. Michel, “Cyberbotics Ltd.WebotsTM: Professional mobile robot simulation,” Int. J. Adv. Robot. Syst., vol. 1, no. 1, pp. 39-42, 2004.