JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Initial Study of a Wire Mesh Tomography Sensor for Liquid/Gas Component Investigation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Initial Study of a Wire Mesh Tomography Sensor for Liquid/Gas Component Investigation
Rahiman, M.H.F.; Siow, L.T.; Rahim, R.A.; Zakaria, Z.; Ang, Vernoon;
  PDF(new window)
 Abstract
Experimental studies have been carried out to study the principle operation of the conductive type wire-mesh tomography sensor and analyse the wire-mesh tomography sensor for the liquid/gas two-phase flow interface and void fraction distribution in a process column. The measurement of the two-phase flows in the process column is based on the cross-sectional local instantaneous conductivity. The sensor consists of two planes of parallel electrode wires with 16 electrodes each and was placed orthogonally with each plane. The sensor electrode wires were made of tinned copper wire with an outer diameter of 0.91 mm which stretched over the sensor fixture. Therefore, this result in the mesh grid size with 5.53×5.53mm2. The wire-mesh sensor was tested in a horizontal liquid/gas two-phase flows process column with nominal diameter of 95.6 mm and the sampling frequency of 5882.3529 Hz. The tomogram results show that the wire-mesh tomography provides significant results to represent the void fraction distribution in the process column and estimation error was found in the liquid/gas interface level
 Keywords
Process tomography;Wire-mesh sensor;Wire-mesh tomography;
 Language
English
 Cited by
 References
1.
C. T. Crowe, Multiphase Flow Handbook. CRC Press, 2005.

2.
H.-M. Prasser, A. Böttger, and J. Zschau, “A new electrode-mesh tomograph for gas-liquid flows,” Flow Meas. Instrum., vol. 9, no. 2, pp. 111-119, Jun. 1998. crossref(new window)

3.
Y. Yunos, R. Rahim, S. Muji, M. Rahiman, and M. Pusppanathan, “Initial Study on Optical Fiber Array to Produce Particle Size Information for Hydraulic Process,” Arab J Sci Eng, vol. 38, no. 8, pp. 2193-2195, Aug. 2013. crossref(new window)

4.
E. J. Mohamad, R. A. Rahim, Leow Pei Ling, M. H. F. Rahiman, O. M. Faizan Bin Marwah, and N. M. N. Ayob, “Segmented Capacitance Tomography Electrodes: A Design and Experimental Verifications,” Sensors Journal, IEEE, vol. 12, no. 5, pp. 1589-1598, May 2012..

5.
Z. Zakaria, M. S. B. Mansor, R. A. Rahim, I. Balkhis, M. H. F. Rahiman, H. A. Rahim, and S. Yaacob, “Magnetic Induction Tomography: A Review on the Potential Application in Agricultural Industry of Malaysia,” Journal of Agricultural Science, vol. 5, no. 9, Aug. 2013.

6.
S.Z.M. Muji, C.L. Goh, N.M.N. Ayob, R.A. Rahim, M. H. F. Rahiman, H. A. Rahim, M. J. Pusppanathan, and N. S. M. Fadzil, “Optical tomography hardware development for solid gas measurement using mixed projection,” Flow Measurement and Instrumentation, vol. 33, no. 0, pp. 110-121, Oct. 2013. crossref(new window)

7.
H.-M. Prasser, D. Scholz, and C. Zippe, “Bubble size measurement using wire-mesh sensors,” Flow Meas. Instrum., vol. 12, no. 4, pp. 299-312, Aug. 2001. crossref(new window)

8.
S. Richter, M. Aritomi, H.-M. Prasser, and R. Hampel, “Approach towards spatial phase reconstruction in transient bubbly flow using a wire-mesh sensor,” Int. J. Heat Mass Transf., vol. 45, no. 5, pp. 1063-1075, Feb. 2002. crossref(new window)

9.
I. Ismail, J. C. Gamio, S. F. A. Bukhari, and W. Q. Yang, “Tomography for multi-phase flow measurement in the oil industry,” Flow Meas. Instrum., vol. 16, no. 2-3, pp. 145-155, Apr. 2005. crossref(new window)

10.
D. Patel, F. Ein-Mozaffari, and M. Mehrvar, “Using tomography to visualize the continuous-flow mixing of biopolymer solutions inside a stirred tank reactor,” Chem. Eng. J., vol. 239, pp. 257-273, Mar. 2014. crossref(new window)

11.
H.-M. Prasser, “Novel experimental measuring techniques required to provide data for CFD validation,” Nucl. Eng. Des., vol. 238, no. 3, pp. 744-770, Mar. 2008. crossref(new window)

12.
C. Yan and Y. Liao, “Design of a new optical fiber process tomography configuration with high image reconstruction resolution,” Sens. Actuators B Chem., vol. 186, pp. 186-192, Sep. 2013. crossref(new window)

13.
C. G. Xie, N. Reinecke, M. S. Beck, D. Mewes, and R. A. Williams, “Electrical tomography techniques for process engineering applications,” Chem. Eng. J. Biochem. Eng. J., vol. 56, no. 3, pp. 127-133, Feb. 1995. crossref(new window)

14.
T. York, “Status of electrical tomography in industrial applications,” J. Electron. Imaging, vol. 10, no. 3, pp. 608-619, 2001. crossref(new window)

15.
H. S. Tapp, A. J. Peyton, E. K. Kemsley, and R. H. Wilson, “Chemical engineering applications of electrical process tomography,” Sens. Actuators B Chem., vol. 92, no. 1-2, pp. 17-24, Jul. 2003. crossref(new window)

16.
Q. Marashdeh, W. Warsito, L.-S. Fan, and F. L. Teixeira, “A Multimodal Tomography System Based on ECT Sensors,” IEEE Sens. J., vol. 7, no. 3, pp. 426-433, 2007. crossref(new window)

17.
Z. Cao, H. Wang, W. Yang, and Y. Yan, “A calculable sensor for electrical impedance tomography,” Sens. Actuators Phys., vol. 140, no. 2, pp. 156-161, Nov. 2007. crossref(new window)

18.
E. J. Mohamad, R. A. Rahim, P. L. Leow, M. H. Fazalul Rahiman, O. M. F. Marwah, N. M. Nor Ayob, H. A. Rahim, and F. R. Mohd Yunus, “An introduction of two differential excitation potentials technique in electrical capacitance tomography,” Sens. Actuators Phys., vol. 180, pp. 1-10, Jun. 2012. crossref(new window)

19.
M. Yang, H. I. Schlaberg, B. S. Hoyle, M. S. Beck, and C. Lenn, “Real-time ultrasound process tomography for two-phase flow imaging using a reduced number of transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 3, pp. 492-501, 1999. crossref(new window)

20.
Y. Abdul Wahab, R. Abdul Rahim, M. H. Fazalul Rahiman, S. Ridzuan Aw, F. R. Mohd Yunus, C. L. Goh, H. Abdul Rahim, and L. P. Ling, “Non-invasive process tomography in chemical mixtures - A review,” Sensors and Actuators B: Chemical, vol. 210, no. 0, pp. 602-617, Apr. 2015. crossref(new window)

21.
M. D. Supardan, Y. Masuda, A. Maezawa, and S. Uchida, “The investigation of gas holdup distribution in a two-phase bubble column using ultrasonic computed tomography,” Chem. Eng. J., vol. 130, no. 2-3, pp. 125-133, Jun. 2007. crossref(new window)

22.
H. Pietruske and H.-M. Prasser, “Wire-mesh sensors for high-resolving two-phase flow studies at high pressures and temperatures,” Flow Meas. Instrum., vol. 18, no. 2, pp. 87-94, Apr. 2007. crossref(new window)

23.
P. P. Bhattacharjee and S. Sen, "Wire-Mesh Tomograph for Gas-Liquid Flow Measurement," presented at the 2005 Annual IEEE INDICON, pp. 427-430, 2005.