JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm
Yoon, Jae-Seung; Lee, Kyoung-Gu; Lee, June-Seok; Lee, Kyo-Beum;
  PDF(new window)
 Abstract
Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.
 Keywords
Off-line parameter identification;parameter estimation;PMSM;IPMSM;Goertzel algorithm;
 Language
English
 Cited by
 References
1.
J. H. Kim, J. G. Kim, Y. H. Ji, Y. C. Jung, and C. Y. Won, “An Islanding Detection Method for a Grid-Connected System Based on the Goertzel Algorithm,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1049-1055, Apr. 2011. crossref(new window)

2.
J. S. Lee, H. G. Jeong, and K. B. Lee, “Active Damping for Wind Power Systems with LCL filters using a DFT,” Journal of Power Electron., vol. 12, no. 2, pp. 326-332, Mar. 2012. crossref(new window)

3.
L. Peretti and M. Zigliotto, “Automatic Procedure for Induction Motor Parameter Estimation at Standstill,” IET Electr. Power Appl., vol. 6, no. 4, pp. 214-224, Apr. 2012. crossref(new window)

4.
R. Kerkman, J. Thunes, T. Rowan, and D. Schlegel, “A Frequency-Based Determination of Transient Inductance and Rotor Resistance for Field Commissioning Purposes,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 577-584, May./Jun. 1996. crossref(new window)

5.
N. Urasaki, T. Senjyu, and K. Uezato, “A Novel Calculation Method for Iron Loss Resistance Suitable in Modeling Permanent-Magnet Synchronous Motors,” IEEE Trans. Energy Conv., vol. 18, no. 1, pp. 41-47, Mar. 2003. crossref(new window)

6.
S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa, “Loss Minimization Control of Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 511-517, Oct. 1994.

7.
J. W. Choi and S. K. Sul, “Inverter Output Voltage Synthesis using Novel Dead Time Compensation,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 221-227, Mar. 1996. crossref(new window)

8.
S. Bolognani, L. Peretti, and M. Zigliotto, “Repetitive-Control-Based Self-Commissioning Procedure for Inverter Nonidealities Compensation,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1587-1596, Sept./Oct. 2008. crossref(new window)

9.
J. K. Seok, S. I. Moon, and S. K. Sul, “Induction Machine Parameter Identification using PWM Inverter at Standstill,” IEEE Trans. Energy Conv., vol. 12, no. 2, pp. 127-132, Jun. 1997. crossref(new window)

10.
A. Proca and A. Keyhani, “Identification of Variable Frequency Induction Motor Models From Operating Data,” IEEE Trans. Energy Conv., vol. 17, no. 1, pp. 24-31, Mar. 2002. crossref(new window)

11.
A. R. Munoz and T. A. Lipo, “On-line Dead-Time Compensation Technique for Open-Loop PWM-VSI Drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, Jul. 1999. crossref(new window)

12.
M. Hinkkanen, T. Tuovinen, L. Harnefors, and J. Luomi, “A Combined Position and Stator-Resistance Observer for Salient PMSM Drives: Design and Stability Analysis,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 601-609, Feb. 2012. crossref(new window)

13.
Y. S. Han, J. S. Choi, and Y. S. Kim, “Sensorless PMSM Drive with a Sliding Mode Control Based Adaptive Speed and Stator Resistance Estimator,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3588-3591, Sept. 2000. crossref(new window)

14.
S. Po-ngam and S. Sangwongwanich, “Stability and Dynamic Performance Improvement of Adaptive Full-Order Observer for Sensorless PMSM Drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, Feb. 2012. crossref(new window)

15.
I. Jeong, B. J. Hyon, and K. Nam, “Dynamic Modeling and Control for SPMSMs with Internal Turn Short Fault,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3495-3508, Jul. 2013. crossref(new window)

16.
H. W. Sim, J. S. Lee, and K. B. Lee, “On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter,” Journal of Electrical Engineering & Technology, vol. 9, no. 2, pp. 600-608, Mar. 2014. crossref(new window)

17.
H. W. Sim, J. S. Lee, and K. B. Lee, “A Simple Strategy for Sensorless Speed Control for an IPMSM During Startup and Over Wide Speed Range,” Journal of Electrical Engineering & Technology, vol. 9, no. 5, pp. 1582-1591, Sept. 2014. crossref(new window)

18.
A. Sarikhani and O. A. Mohammed, “Inter-Turn Fault Detection in PM Synchronous Machines by Physics-Based EMF Estimation,” in Proc. ECCE, pp. 1254-1261, Sep. 2012.

19.
E. Jacobsen and R. Lyons, “The Sliding DFT,” IEEE Signal Process. Mag., vol. 20, no. 2, pp. 74-80, Mar. 2003.