JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Three-phase Hybrid Power Flow Algorithm for Meshed Distribution System with Transformer Branches and PV Nodes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Three-phase Hybrid Power Flow Algorithm for Meshed Distribution System with Transformer Branches and PV Nodes
Li, Hongwei; Wu, Huabing; Jiang, Biyu; Zhang, Anan; Fang, Wei;
  PDF(new window)
 Abstract
Aiming at analyzing the power flow of the distribution systems with distribution transformer (DT) branches and PV nodes, a hybrid three-phase power flow methodology is presented in this paper. The incidence formulas among node voltages, loop currents and node current injections have been developed based on node-branch incidence matrix of the distribution network. The method can solve the power flow directly and has higher efficiency. Moreover, the paper provides a modified method to model DT branches by considering winding connections, phase shifting and off-nominal tap ratio, and then DT branches could be seen like one transmission line with the proposed power flow method. To deal with the PV nodes, an improved approach to calculate reactive power increment at each PV node was deduced based on the assumption that the positive-sequence voltage magnitude of PV node is fixed at a given value. Then during calculating the power flow at each iteration, it only needs to update current injection at each PV node with the proposed algorithm. The process is very simple and clear. The results of IEEE 4 nodes and the modified IEEE 34 nodes test feeders verified the correctness and efficiency of the proposed hybrid power flow algorithm.
 Keywords
Distribution transformer;Meshed distribution system;Node-branch incidence matrix;Power flow;PV nodes;
 Language
English
 Cited by
 References
1.
T. Chen, M. Chen, K. Hwang, P. Kotas, and E. Chebli, “Distribution system power flow analysis: A rigid approach,” IEEE Trans. Power Deliv., vol. 6, no. 3, pp. 1146-1152, 1991. crossref(new window)

2.
Ray D. Zimmerman, Hsiao-Dong Chiang, “Fast decoupled power flow for unbalanced radial distribution systems,” IEEE Trans. Power Syst., vol. 10, no. 4, pp. 2045-2051, 1995. crossref(new window)

3.
Zhang F, Cheng C S, “A Modified Newton Method for Radial Distribution System Power Flow Analysis,” IEEE Trans. Power Syst., vol. 12, no. 1, pp. 389-397, 1997.

4.
P. A. N. Garcia, J. L. R. Pereira, S. Carneiro, et al, “Three-phase power flow calculations using the current injection method,” IEEE Trans. Power Syst., vol.15, no. 2, pp. 508-514, 2000.

5.
M. Abdel-Akher, K. Nor, and A. Rashid, “Improved three-phase power-flow methods using sequence components,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1389-1397, 2005. crossref(new window)

6.
Shirmohammadi D, Hong H W, Semlyen A, et al, “A compensation-based power flow method for weakly meshed distribution and transmission networks,” IEEE Trans. on Power Syst., vol. 3, no. 2, pp. 753-761, 1988. crossref(new window)

7.
Luo G X, Semlyen A, “Efficient load flow for large weakly meshed networks,” IEEE Trans. on Power Syst., vol. 5, no. 4, pp. 1309-1316, 1990.

8.
C. Cheng and D. Shirmohammadi, “A three-phase power flow method for real-time distribution system analysis,” IEEE Trans. Power Syst., vol. 10, no. 2, pp. 671-679, May 1995. crossref(new window)

9.
Teng J H, “A direct approach for distribution system load flow solutions,” IEEE Trans. on Power Deliv., vol.18, no.3, pp. 882-887, 2003.

10.
W.C. Wu , B.M. Zhang, “A three-phase power flow algorithm for distribution system power flow based on loop-analysis method,” Int. J. Elect. Power and Energy Syst., vol. 30, no. 1, pp. 8-15, 2008. crossref(new window)

11.
Augugliaro, L. Dusonchet, S. Favuzza, et al, “A backward sweep method for power flow solution in distribution networks,” Int. J. Elect. Power and Energy Syst., vol. 32, no. 1, pp. 271-280, 2010. crossref(new window)

12.
T. H. Chen, M. S. Chen, T. Inoue, P. Kotas, and E. A. Chebli, “Three phase cogenerator and transformer models for distribution system analysis,” IEEE Trans. Power Deliv., vol.6, no.4, pp1671-1681, 1991. crossref(new window)

13.
Mesut E. Baran, Eric A. Staton, “Distribution Transformer Models for Branch Current Based Feeder Analysis,” IEEE Trans. on Power Syst., vol. 12, no. 2, pp. 698-703, 1997. crossref(new window)

14.
Chen T. H., Yang W. C., Guo T. Y., and Pu G. C., “Modeling and analysis of asymmetrical three-phase distribution transformer banks with mid-tap connected to the secondary neutral conductor,” Elect. Power Syst. Research, vol. 54, no. 2, pp. 83-89, 2000. crossref(new window)

15.
Irving M. R. and Al-Othman A. K., “Admittance matrix models of three-phase transformers with various neutral grounding configurations,” IEEE Trans. Power Syst., vol. 18, no. 3, pp. 1210-1212, Aug. 2003. crossref(new window)

16.
Xiao P., Yu D.C., and Yan W., "A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations," IEEE Trans. Power Syst., vol. 21, no. 3, pp. 153-159, 2006. crossref(new window)

17.
Wang Z., Chen F., and Li J., “Implementing transformer nodal admittance matrices into backward / forward sweep-based power flow analysis for unbalanced radial distribution systems,” IEEE Trans. Power Syst., vol. 19, no. 4, pp. 1831-1836, 2004. crossref(new window)

18.
LI hong-wei, LIU Qing-you, SHEN Xia, “A Three-Phase Unbalanced Power Flow Solution with Three-phase Distribution Transformers,” in Proceedings of DRPT2011, Weihai, China, pp. 831-836, July, 2011.

19.
R. Palma-Behnke, J.L.A. Cerda, L.S. Vargas, A. Jofre, “A distribution company energy acquisition market model with integration of distributed generation and load curtailment options,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1718-1727, 2005. crossref(new window)

20.
Pecas Lopes J A, Hatziargyriou N, Mutale J, et al, “Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities,” Elect. Power Syst. Research, vol.77, no. 9, pp. 1189-1203, 2007. crossref(new window)

21.
Y. Zhu and K. Tomsovic, “Adaptive power flow method for distribution systems with dispersed generation,” IEEE Trans. Power Deliv., vol. 17, no. 7, pp. 822-827, 2002.

22.
Ding M., Guo X.F. , "Three-phase power flow for the weakly meshed distribution network with the distributed generation," Proceedings of the CSEE, vol. 29, no. 13, pp. 35-40, 2009.

23.
Li H.W., Sun H.B., Zhang A, et al, "Positive-sequence component based three-phase unbalanced power flow solution for distribution system with PV nodes," Proceedings of the CSEE, vol. 32, no. 1, pp. 115-121, 2012.

24.
Hongwei Li, Anan Zhang, Xia Shen, Jin Xu, “A load flow method for weakly meshed distribution networks using powers as flow variables,” Int. J. Elect. Power and Energy Syst., vol. 58, pp. 291-299, 2014 crossref(new window)

25.
Distribution System Analysis Subcommittee. Radial distribution test feeders [EB/OL]. http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html.

26.
William H. Kersting, Distribution System Modeling and Analysis. 2nd. New York: Taylor & Francis, 2007.