JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Paper Machine Industrial Analysis on Moisture Control Using BF-PSO Algorithm and Real Time Implementation Setup through Embedded Controller
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Paper Machine Industrial Analysis on Moisture Control Using BF-PSO Algorithm and Real Time Implementation Setup through Embedded Controller
Senthil Kumar, M.; Mahadevan, K.;
  PDF(new window)
 Abstract
Proportional Integral Derivative (PID) controller tuning is an area of interest for researchers in many areas of science and engineering. This paper presents a new algorithm for PID controller tuning based on a combination of bacteria foraging and particle swarm optimization. BFO algorithm has recently emerged as a very powerful technique for real parameter optimization. To overcome delay in an optimization, combine the features of BFOA and PSO for tuning the PID controller. This new algorithm is proposed to combine both the algorithms to get better optimization values. The real time prototype model of paper machine is designed and controlled by using PIC microcontroller embedded with the programming in C language.
 Keywords
Paper industry;PSO;PID;BFO;BF-PSO;
 Language
English
 Cited by
 References
1.
M. Aníbal Valenzuela, Senior Member, IEEE, John Martin Bentley, Life Fellow, IEEE, and Robert D. Lorenz, Fellow, IEEE., Estimation of Condensate Inside Dryer Cylinders During Section Shutdown., IEEE T INDU APPLI., vol. 50, no. 3, 1668-1677, 2014. crossref(new window)

2.
Guillermo Ramírez, Member, IEEE, Robert D. Lorenz, Fellow, IEEE, and M. Aníbal Valenzuela, Senior Member, IEEE., Observer-Based Estimation of Modulus of Elasticity for Papermaking Process, IEEE T INDU APPLI., vol. 50, no. 3, 1678-1686, 2014. crossref(new window)

3.
Guillermo Ramírez, Member, IEEE, M. Aníbal Valenzuela, Senior Member, IEEE, andRobert D. Lorenz, Fellow, IEEE., Expert System for the Detection of Condensate Accumulation Inside Dryer Cylinders During Section Starting., IEEE T INDU APPLI., vol. 51, no. 2, 1427-1437, 2015. crossref(new window)

4.
Ola Slätteke., Modeling and control of the paper machine drying section (Sweden by Media-Tryck, Lund University), 2006.

5.
Chang Hoe Heo., Hyunjun Cho & Yeong -Koo Yeo, Dynamic modelling of paper drying processes, KOREAN J CHEM ENG., vol. 28, no. 8, 1651-1657, 2011. crossref(new window)

6.
Shweta goyal., & Rajesh Kumar., ANN Control of paper drying process, International Journal of Application or Innovation in Engineering & Management, vol. 2, no. 7, 100-107, July2013.

7.
Paul C Austin., John Mack., Matthew McEwan., Puya Afshar., Martin Brown., & J Maciejowski., Improved Energy Efficiency in Paper Making Through Reducing Dryer Steam Consumption using Advanced Process Control, Papercon, 1122-1132, 2011.

8.
Karthik, C., Valarmathi, K., & Raja Lakshmi, M., Nonlinear modelling of moisture control of drying process in paper machine, Proc Int conf on modelling optimisation and computing(ICMOC-2012), (Kumarakoil, India), 1104-1111, 2012.

9.
Prabhakar, G., Nedumal Pugazhenthi, P., & Selvaperumal, S., Implementation Analysis of State Space Modeling and Control of Nonlinear Process using PID algorithm in MATLAB and PROTEUS Environment Applied Mechanics and Materials, vol. 573, 297-303, 2014. crossref(new window)

10.
Sharma, S. R., Dahikar, P. B., Embedded design of temperature controller using PIC 16F876A for industries and laboratories International Journal of Innovative Research in Computer and Communication Engineering, vol. 1, no. 10, 2414-2422, 2013.

11.
Ahmed, M. A. Haidar., Chellali Benachaiba., Mohamad Zahir., Software interfacing of servo motor with Microcontroller J. Electrical Systems, vol. 1, no. 9, 84-99, 2013.

12.
Venugopal, P., Ajanta Ganguly., Priyanka Singh., Design of tuning methods of PID controller using fuzzy logic. International Journal of Emerging trends in Engineering and Development, vol. 5, no. 3, 239-248, 2013.

13.
Tang, K. S., Kim Fung Man., Guanrong Chen., & Sam Kwong., An Optimal fuzzy PID controller., IEEE T IND ELECTRON, vol. 48, no. 4, 757, 2001. crossref(new window)

14.
Ziegler, J. G., Nichols, N. B., & Rochester, N. Y., TRANSACTIONS OF THE A. S. M. E, 759-765, 1942.

15.
Sharifian, M. B. B., Rahnavard, R., & Delavari, Velocity control of DC Motor based intelligent methods and optimal integral state feedback controller, International Journal of Computer Theory and Engineering, vol. 1, no1 1793-8201, 2009.

16.
Chia-Nan Ko., Chia-Ju Wu., A PSO-Tuning method for design of fuzzy PID controllers J. Vibration and Control, (2007).

17.
Zwe-Lee Gaing., A Particle swarm optimization approach for optimum design of PID Controller in AVR system, IEEE T ENERGY CONVER, vol. 19, no. 2, 384-391, 2004. crossref(new window)

18.
Mishra, S., Bhende, C. N., Bacterial Foraging Technique-Based Optimized Active power filter for load compensation, IEEE T POWER DELIVER, vol. 22, no. 1, 457-465, 2007. crossref(new window)

19.
Tripathy, M., Mishra, S., Bacteria Foraging-Based solution to optimize both real power loss and voltage stability., IEEE T POWER SYST, vol. 22, no. 1, 240-248, 2007. crossref(new window)

20.
Morteza Eslamian., Seyed Hossein Hosseinian., Behrooz Vahidi., Bacterial Foraging-Based solution to the unit-commitment problem., IEEE T POWER SYST vol. 24, no. 3, 1478-1488, 2009. crossref(new window)

21.
Swagatam Das., Sambarta Dasgupta., Arijit Biswas, Ajith Abraham., Amit Konar., On Stability of the chemotactic dynamics in Bacterial-Foraging optimization Algorithm., IEEE T SYST MAN CY A., vol. 39, no. 3, 670-679, 2009.

22.
Mishra, S., A Hybrid least square-Fuzzy Bacterial Foraging strategy for Harmonic Estimation., IEEE T EVOLUT COMPUT., vol. 9, no. 1, 61-73, 2005. July 2001. crossref(new window)