Sampled-Data Observer-Based Decentralized Fuzzy Control for Nonlinear Large-Scale Systems

- Journal title : Journal of Electrical Engineering and Technology
- Volume 11, Issue 3, 2016, pp.724-732
- Publisher : The Korean Institute of Electrical Engineers
- DOI : 10.5370/JEET.2016.11.3.724

Title & Authors

Sampled-Data Observer-Based Decentralized Fuzzy Control for Nonlinear Large-Scale Systems

Koo, Geun Bum; Park, Jin Bae; Joo, Young Hoon;

Koo, Geun Bum; Park, Jin Bae; Joo, Young Hoon;

Abstract

In this paper, a sampled-data observer-based decentralized fuzzy control technique is proposed for a class of nonlinear large-scale systems, which can be represented to a Takagi-Sugeno fuzzy system. The premise variable is assumed to be measurable for the design of the observer-based fuzzy controller, and the closed-loop system is obtained. Based on an exact discretized model of the closed-loop system, the stability condition is derived for the closed-loop system. Also, the stability condition is converted into the linear matrix inequality (LMI) format. Finally, an example is provided to verify the effectiveness of the proposed techniques.

Keywords

Sampled-data observer-based decentralized fuzzy control;Nonlinear large-scale systems;Takagi-Sugeno fuzzy system;Exact discretized model;Linear matrix inequality;

Language

English

References

1.

M. Jamshidi, Large-Scale System: Modeling and Control: Elesevier, 1983.

2.

T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems: Springer, 1995.

3.

L. Bakule, “Decentralized control: an overview,” Annual Reviews in Control, vol. 32, pp. 87-98, 2008.

4.

S. S. Stanković, D. M. Stipanović, and D. D. Šiljak, “Decentralized dynamic output feedback for robust stabilization of a class of nonlinear interconnected systems,” Automatica, vol. 43, pp. 861-867, 2007.

5.

S. S. Stanković and D. D. Šiljak, “Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback,” Syst. Control Lett., vol. 58, pp. 271-275, 2009.

6.

S. Tong, C. Liu, and Y. Li, “Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties,” IEEE Trans. Fuzzy Syst., vol. 18, no. 5, pp. 845-861, 2010.

7.

S. Ganapathy and S. Velusami, “Decentralized load-frequency control of interconnected power systems with SMES units and governor dead band using multi-objective evolutionary algorithm,” J. Electr. Eng. & Technol. vol. 4, no. 4, pp. 443-450, 2009.

8.

D. Nešić and A. R. Teel, “Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model,” Automatica, vol. 42, pp. 1801-1808, 2006.

9.

Z. Mao, B. Jiang, and P. Shi, “Fault-tolerant control for a class of nonlinear sampled-data systems via a Euler approximate observer,” Automatica, vol. 46, pp. 1852-1859, 2010.

10.

E. Fridman, U. Shaked, and V. Suplin, “Input/output delay approach to robust sampled-data H_{∞} control,” Syst. Control Lett., vol.54, pp.271-282, 2005.

11.

E. Fridman, “A refined input delay approach to sampled-data control,” Automatica, vol.46, pp.421-427, 2010.

12.

C.-S. Tseng, “A novel approach to H_{∞} de-centralized fuzzy-observer-based fuzzy control design for non-linear interconnected systems,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1337-1350, 2008.

13.

F.-H. Hsiao, J.-D. Hwang, C.-W. Chen, and Z.-R. Tsai, “Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 1, pp. 152-163, 2005.

14.

C. Hua and S. X. Ding, “Decentralized networked control system design using T-S fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 20, no. 1, pp. 9-21, 2012.

15.

G. B. Koo, J. B. Park, and Y. H. Joo, “Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach,” IEEE Trans. Fuzzy Syst., vol. 22, no. 2, pp. 406-419, 2014.

16.

H. K. Lam and H. F. Leung, “Sampled-data fuzzy controller for time-delay nonlinear systems: fuzzymodel-based LMI approach,” IEEE Trans. Syst, Man, Cybern. B, Cybern., vol.37, no.3, pp.617-629, 2007.

17.

H. K. Lam and L. D. Seneviratne, “Chaotic synchronization using sampled-data fuzzy controller based on fuzzy-model-based approach,” IEEE Trans. Fuzzy Syst., vol. 55, no. 3, pp. 883-892, 2008.

18.

D. H. Lee, J. B. Park, Y. H. Joo, and S. K. Kim, “Local H∞ Controller Design for Continuous-time TS Fuzzy Systems”, Int. J. Control, Autom. Syst., Vol. 13, No. 6, pp. 1499-1507, 2015, 12.

19.

J. Yoneyama, “Robust sampled-data stabilization of uncertain fuzzy systems via input delay approach,” Inform. Sciences, vol. 198, pp. 169-176, 2012.

20.

H. J. Lee, J. B. Park, and Y. H. Joo, “Digitalizing a fuzzy observer-based output-feedback control: intelligent digital redesign approach,” IEEE Trans. Fuzzy Syst., vol. 13, no. 5, pp. 701-716, 2005.

21.

H.C. Sung, D.W. Kim, J.B. Park, and Y.H. Joo, “Robust digital control of fuzzy systems with parametric uncertainties: LMI-based digital redesign approach,” Fuzzy Sets Syst., vol. 161, pp. 919-933, 2010.

22.

G. B. Koo, J. B. Park, and Y. H. Joo, “Intelligent digital redesign for nonlinear interconnected systems using decentralized fuzzy control,” J. Electr. Eng. & Technol., vol. 7, no. 3, pp. 420-428, 2012.

23.

D. W. Kim, J. B. Park, and Y. H. Joo, “Theoretical justification of approximate norm minimization method for intelligent digital redesign,” Automatica, vol. 44, pp. 851-856, 2008.

24.

H. J. Lee and D. W. Kim, “Intelligent digital revisited: approximate discretization and stability limitation,” Fuzzy Sets Syst., vol.159, pp.3221-3231, 2008.

25.

D. W. Kim, H. J. Lee, and M. Tomizuka, “Fuzzy stabilization of nonlinear systems under sampled-data feedback: an exact discrete-time model approach,” IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 251-260, 2010.

26.

D. W. Kim and H. J. Lee, “Sampled-data observer-based output-feedback fuzzy stabilization of nonlinear systems: exact discrete-time design approach,” Fuzzy Sets Syst., vol. 201, pp. 20-39, 2012.

27.

G. B. Koo, J. B. Park, and Y. H. Joo, “Guaranteed cost sampled-data fuzzy control for non-linear systems: a continuous-time Lyapunov approach,” IET Control Theory Appl., vol. 13, no. 7, pp. 1745-1752, 2013.

28.

K. Gu, “An integral in the stability problem of time-delay systems,” in Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000.

29.

J. V. D. Oliveira, J. Bernussou, and J. C. Geromel, “A new discrete-time robust stability condition,” Syst. Control Lett., vol. 37, pp. 261-265, 1999.

30.

Y. Zheng and G. Chen, “Fuzzy impulsive control of chaotic based on TS fuzzy model,” Chaos, Solitons Fractals, vol. 39, pp. 2002-2011, 2009.

31.

W.-S. Yu and T.-S. Wu, “Fuzzy adaptive observer-based control for Chua’s circuit with output time delay,” IET Control Theory Appl., vol. 5, no. 4, pp. 303-320, 2011.

32.

H. C. Sung, J. B. Park, “Observe-based sampled-data control for uncertain nonlinear systems: intelligent digital redesign approach,” Int. J. Control, Autom. Syst., vol. 12, No. 3, pp. 486-496, 2014, 6.

33.

D. H. Lee, Y. H. Joo, and S. K. Kim, “H_{∞} Digital Redesign for LTI Systems”, Int. J. Control, Autom. Syst., Vol. 13, No. 3. pp. 603-610, 2015, 6.

34.

D. H. Lee, Y. H. Joo, and M. H. Tak, “LMI Conditions for Local Stability and Stabilization of Continuous-Time T-S Fuzzy Systems”, Int. J. Control, Autom. Syst., Vol. 13, No. 4, pp. 986-994, 2015, 8.

35.

D. H. Lee and Y. H. Joo, “LMI-based Robust Sampled-data Stabilization of Polytopic LTI Systems: A Truncated Power Series Expansion Approach”, Int. J. Control, Autom. Syst., vol., 3, no. 2, pp. 284-291, 2015, 4.