JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Trade-Off Strategies in Designing Capacitor Voltage Balancing Schemes for Modular Multilevel Converter HVDC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Trade-Off Strategies in Designing Capacitor Voltage Balancing Schemes for Modular Multilevel Converter HVDC
Nam, Taesik; Kim, Heejin; Kim, Sangmin; Son, Gum Tae; Chung, Yong-Ho; Park, Jung-Wook; Kim, Chan-Ki; Hur, Kyeon;
  PDF(new window)
 Abstract
This paper focuses on the engineering trade-offs in designing capacitor voltage balancing schemes for modular multilevel converters (MMC) HVDC: regulation performance and switching loss. MMC is driven by the on/off switch operation of numerous submodules and the key design concern is balancing submodule capacitor voltages minimizing switching transition among submodules because it represents the voltage regulation performance and system loss. This paper first introduces the state-of-the-art MMC-HVDC submodule capacitor voltage balancing methods reported in the literatures and discusses the trade-offs in designing these methods for HVDC application. This paper further proposes a submodule capacitor balancing scheme exploiting a control signal to flexibly interchange between the on-state and the off-state submodules. The proposed scheme enables desired performance-based voltage regulation and avoids unnecessary switching transitions among submodules, consequently reducing the switching loss. The flexibility and controllability particularly fit in high-level MMC HVDC applications where the aforementioned design trade-offs become more crucial. Simulation studies for MMC HVDC are performed to demonstrate the validity and effectiveness of the proposed capacitor voltage balancing algorithm.
 Keywords
Modular multilevel converter (MMC);High voltage direct current (HVDC);Capacitor voltage balancing;
 Language
English
 Cited by
 References
1.
M. Hagiwara and H. Akagi, “Control and experiment of pulse width modulated modular multilevel converters,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1737-1746, Jul. 2009. crossref(new window)

2.
J. Qin, and M. Saeedifard, “Reduced SwitchingFrequency Voltage-Balancing Strategies for Modular Multilevel HVDC Converters,” IEEE Trans. Power Delivery, vol. 28, no. 4, pp. 2403-2410, Oct. 2013.

3.
F. Deng, and Z. Chen, “A Control Method for Voltage Balancing in Modular Multilevel Converters,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 66-76, Jan. 2014. crossref(new window)

4.
Kim, H.; Kim, S.; Chung, Y.; Yoo, D.; Kim, C.; Hur, K., “Operating Region of Modular Multilevel Converter for HVDC with Controlled Second-order Harmonic Circulating Current: Elaborating P-Q Capability,” in Power Delivery, IEEE Transactions on (early access).

5.
G. T. Son, H. J. Lee, T. S. Nam, Y. H. Chung, U. H. Lee, S. T. Baek, K. Hur, and J. W. Park, “Design and Control of a Modular Multilevel HVDC Converter with Redundant Power Modules for Non-Interruptible Energy Transfer,” IEEE Trans. on power delivery, vol. 27, no. 3, pp. 1611-1619, July 2012. crossref(new window)

6.
Q. Tu, Z. Xu, and L. Xu, “Reduced switching-frequency modulation and circulating current sup pression for modular multilevel converters,” IEEE Trans. Power Del., vol. 26, no. 3, pp. 2009-2017, Jul. 2011.

7.
M. Guan and Z. Xu, “Control and modulation strategies for modular multilevel converter based HVDC system,” in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc., pp. 849-854, Nov. 2011.

8.
M. Hagiwara, R. Maeda, and H. Akagi, “Control and analysis of the modular multilevel cascade converter based on double-star chopper cells (MMCC-DSCC),” IEEE Trans. Power Electron., vol. 26, no. 6, pp. 1649-1658, Jun. 2011. crossref(new window)

9.
H. Akagi, “Classification, terminology, and application of the modular multilevel cascade converter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3119-3130, Nov. 2011. crossref(new window)

10.
K. Wang, Y. Li, Z. Zheng, and L. Xu, “Voltage balancing and fluctuation suppression methods of floating capacitors in a new modular multilevel converter,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1943-1954, May 2013. crossref(new window)

11.
S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modulation, losses and semiconductor requirements of modular multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2633-2642, Aug. 2010. crossref(new window)

12.
Z. Li, P. Wang, H. Zhu, Z. Chu, and Y. Li, “An improved pulse width modulation method for chopper-cell-based multilevel inverters,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3472-3481, Aug. 2012. crossref(new window)

13.
J. Mei, B. Xiao, K. Shen, L. M. Tolbert, and J. Y. Zheng, “Modular multilevel inverter with new modulation method and its application to photovoltaic grid-connected generator,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5063-5073, Nov. 2013. crossref(new window)

14.
M. Saeedifard and R. Iravani, “Dynamic performance of a modular multilevel back-to-back HVDC system,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2903-2912, Oct. 2010. crossref(new window)

15.
F. Shengfang, Z. Kai, X. Jian, and X. Yaosuo, “An improved control system for modular multilevel converters featuring new modulation strategy and voltage balancing control,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 15-19, 2013, pp. 4000-4007.

16.
D. Siemaszko, “Fast Sorting Method for Balancing Capacitor Voltages in Modular Multilevel Converters,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 463-470 , Jan. 2015.

17.
I. Kalle, T. Franz, N. Staffan, A. Antonios, H. Lennart, and N. Hans-Peter, “A submodule implementation for parallel connection of capacitors in modular multilevel converters,” in Proc. 15th Eur. Conf. Power Electron. Appl., Sep. 2-6, 2013, pp. 1-10.

18.
K. Ilves, L. Harnefors, S. Norrga, and H.-P. Nee, “Predictive sorting algorithm for modular multilevel converters minimizing the spread in the submodule capacitor voltages,” in Proc. IEEE Asia Downunder, Jun. 3-6, 2013, pp. 325-331.

19.
G. T. Son, K. Hur, J. W. Park, S. T. Beak, U. H. Lee, and Y. H Chung, “Computationally Efficient Sub-module Selection Scheme for Voltage Balancing Controller of Modular Multilevel Converter,” in Proc. CIGRE Meeting 2012, Paris, pp. 1-8.

20.
N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics-Converters, Applications and Design, 3rd ed. New York: Wiley, 2003.

21.
P. T. Krein, Elements of Power Electronics. New York, NY: Oxford Univ. Press, 1998.

22.
R. Marquardt, and A. Lesnicar, “A new modular voltage source inverter topology,” in Proc. Euro. Conf. Power Electron. Appl. (EPE), 2003, CD-ROM

23.
U. N. Gnanarathna, A. M. Gole, and R. P. Jayasinghe, “Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs,” IEEE Trans. Power Delivery, vol. 26, no. 1, pp.316-324. Jan. 2011. crossref(new window)

24.
S. Teeuwsen, “Modeling the Trans Bay Cable project as voltage-sourced converter with modular multilevel converter design,” in Proc. IEEE Power Energy Soc. Annu. Meeting, pp. 1-8, Jul. 2011.

25.
A. Lesnicar, J. Hildinger, and R. Marquardt, “Modulares stromrichterkonzept fr netzkupplungsanwendungen bei hohen spannungen,” in Proc. ETG-Fachbericht, Bad Nauheim, Germany, vol. 88, pp. 155-161, Apr. 2002.

26.
U. Drofenik and J. Kolar, “A general scheme for calculating switching and conduction-losses of power semiconductors in numerical circuit simulations of power electronic systems,” Proc. Int. Power Electron. Conf., 2005

27.
A. D. Rajapakse, A. M. Gole, and P. L. Wilson, “Electromagnetic transients simulation models for accurate representation of switching losses and thermal performance in power electronic systems,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 319-327, Jan. 2005. crossref(new window)

28.
G. T. Son, S. H. Lee, and J. Park, “Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System,” J. Elect. Eng. Technol., vol. 9, no. 5, pp. 1471-1481, 2014. crossref(new window)