JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC
Gwon, Jin-Su; Park, Jung-Woo; Kang, Dea-Wook; Kim, Sungshin;
  PDF(new window)
 Abstract
This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.
 Keywords
Capacitor voltage ripple;Capacitor design method;Current limit method;Double-line frequency;Modular multilevel converter (MMC);
 Language
English
 Cited by
 References
1.
N. Flourentzou, V.G. Agelidis, and G.D. Demetriades, “VSC-based HVDC power transmission systems: An overview,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 592-602, Mar. 2009. crossref(new window)

2.
B. Andersen, L. Xu, P. J. Horton, and P. Cartwright, “Topologies for VSC transmission,” Power Eng. J., vol. 16, no. 3, pp. 142-150, Jun. 2002. crossref(new window)

3.
Elisabeth N. Abildgaard, Marta Molinas, “Modelling and Control of the Modular Multilevel Converter (MMC),” Energy Procedia, Volume 20, 2012, Pages 227-236. crossref(new window)

4.
E. Solas, G. Abad, J. A. Barrena, S. Aurtenetxea, A. Carcar, and L. Zajac, “Modular Multilevel Converter With Different Submodule Concepts — Part II: Experimental Validation and Comparison for HVDC Application,” Industrial Electronics, IEEE Transactions on , vol. 60, no. 10, pp. 4536, 4545, Oct. 2013. crossref(new window)

5.
Q. Song, W. Liu, X. Li, H. Rao, S. Xu, and L. Li, “A Steady-State Analysis Method for a Modular Multilevel Converter,” Power Electronics, IEEE Transactions on , vol. 28, no. 8, pp. 3702, 3713, Aug. 2013. crossref(new window)

6.
A. Antonopoulos, L. Angquist, and H. P. Nee, “On dynamics and voltage control of the modular multilevel converter,” in Proc. Eur. Conf. Power Electron. Appl., Barcelona, Spain, 2009, pp. 1-10.

7.
M. Zygmanowski, B. Grzesik, and R. Nalepa, “Capacitance and inductance selection of the modular multilevel converter,” in Proc. Int. Conf. Power Electron. Appl., Lille, France, 2013, pp.1-10.

8.
Q. Tu, Z. Xu, H. Huang, and J. Zhang, “Parameter design principle of the arm inductor in modular multilevel converter based HVDC,” in Proc. Int. Conf. Power Syst. Technol., Hangzhou, China, 2010, pp. 1-6.

9.
Q. Tu, Z. Xu, Y. Chang, and L. Guan, “Suppressing DC voltage ripples of MMC-HVDC under unbalanced grid conditions,” IEEE Trans. Power Del., vol. 27, no. 3, pp. 1332-1338, Jul. 2012. crossref(new window)

10.
M. Ji-Woo, K. Chun-Sung, P. Jung-Woo, K. Dea-Wook, and K. Jang-Mok, “Circulating Current Control in MMC Under the Unbalanced Voltage,” IEEE Trans. Power Del., vol. 28, no. 3, pp. 1952, 1959, July 2013. crossref(new window)

11.
Q. Tu, Z. Xu, and L. Xu, “Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters,” IEEE Trans. Power Del., vol. 26, no. 3, pp. 2009-2017, Jul. 2011.

12.
S. Li, T. Haskew, and L. Xu, “Control of HVDC light system using conventional and direct current vector control approaches,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3106-3118, Dec. 2010. crossref(new window)

13.
M. Saeedifard and R. Iravani, “Dynamic performance of a modular multilevel back-to-back HVDC system,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2903-2912, Oct. 2011.

14.
M. Ji-Woo, G. Jin-Su, P. Jung-Woo, K. Dea-Wook, and K. Jang-Mok, “Model Predictive Control With a Reduced Number of Considered States in a Modular Multilevel Converter for HVDC System,” IEEE Trans. Power Del., vol. PP, no. 99, pp. 1,1.

15.
Q. Tu and Z. Xu, “Impact of sampling frequency on harmonic distortion formodular multilevel converter,” IEEE Trans. PowerDel., vol. 26, no. 1, pp. 298-306, Jan. 2011. crossref(new window)

16.
S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modelling, simulation and analysis of a modular multilevel converter for medium voltage applications,” in Proc. IEEE Int. Conf. Ind. Technol., Vina del Mar, Chile, 2010, pp. 775-782.

17.
J. Xu, C. Zhao, W. Liu, and C. Guo, “Accelerated Model of Modular Multilevel Converters in PSCAD/EMTDC,” IEEE Trans. Power Del., vol. 28, no. 1, pp. 129,136, Jan. 2013.

18.
Z. Yuebin, J. Daozhuo, G. Jie, H. Pengfei, and L. Zhiyong, “Control of modular multilevel converter based on stationary frame under unbalanced AC system,” in Proc. 3rd Int. Conf. ICDMA., 2012, pp. 293-296.

19.
M. Saeedifard, R. Iravani, and J. Pou, “A space vector modulation strategy for a back-to-back five-level HVDC converter system,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 452-466, Feb. 2009. crossref(new window)

20.
G. Bergna, E. Berne, P. Egrot, P. Lefranc, A. Arzande, J. C. Vannier, and M. Molinas, “An Energy-Based Controller for HVDC Modular Multilevel Converter in Decoupled Double Synchronous Reference Frame for Voltage Oscillation Reduction,” Industrial Electronics, IEEE Transactions on, vol. 60, no. 6, pp. 2360, 2371, June 2013.

21.
Q. Song, W. Liu, X. Li, H. Rao, S. Xu, and L. Li, “A Steady-State Analysis Method for a Modular Multilevel Converter,” Power Electronics, IEEE Transactions on , vol. 28, no. 8, pp. 3702,3713, Aug. 2013.

22.
Cho, H., M. Sami Fadali, and K. Lee., “Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks.” International Journal of Fuzzy Logic and Intelligent Systems 7.4 (2007): 285-294.

23.
Kim, Y., H. Song, and B. Lee. “Identification of Dynamic Load Model Parameters Using Particle Swarm Optimization.” International Journal of Fuzzy Logic and Intelligent Systems 10.2 (2010): 128-133.

24.
Hur, Don. “Economic considerations underlying the adoption of HVDC and HVAC for the connection of an offshore wind farm in Korea.” Journal of Electrical Engineering & Technology 7.2 (2012): 157-162.

25.
Quach, Ngoc-Thinh, et al. “An Application of Proportional-Resonant Controller in MMC-HVDC System under Unbalanced Voltage Conditions.” Journal of Electrical Engineering & Technology 9.5 (2014): 1746-1752.

26.
Son, Gum Tae, Soo Hyoung Lee, and Jung-Wook Park. “Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System.” Journal of Electrical Engineering & Technology 9.5 (2014): 1471-1481.