JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Position Estimator Employing Kalman Filter for PM Motors Driven with Binary-type Hall Sensors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Position Estimator Employing Kalman Filter for PM Motors Driven with Binary-type Hall Sensors
Lee, Dong-Myung;
  PDF(new window)
 Abstract
Application of vector control scheme for consumer products is enlarging to improve control performance. For the field-oriented control, accurate position detection is essential and generally requires expensive sensors. On the other hand, cost-reduction is important in home appliances, so that binary-type Hall-effect sensors are commonly used rather than using an expensive sensor such as an encoder. The control performance is directly influenced by the accuracy of the position information, and there exist non-uniformities related to Hall sensors in electrical and mechanical aspects, which result in distorted position information. Therefore, to get high-precision position information from low-resolution Hall sensors, this paper proposes a new position estimator consisting of a Kalman filter and feedforward compensation scheme, which generates a linearly changing position signal. The efficacy of the proposed scheme is verified by simulation and experimental results carried out with a 48-pole permanent magnet motor.
 Keywords
Kalman filter;Position estimation;Hall-effect sensor;Observer;
 Language
English
 Cited by
 References
1.
S. Y. Kim, C. C. Choi, K. J. Lee, and W. T. Lee, “An improved rotor position estimation with vector tracking observer in PMSM drives with low resolution Hall-effect sensors,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4078-4086, 2011. crossref(new window)

2.
J. D. R. Dominguez, A. Navarrete, M. A. Meza, A. G. Loukianov, and J. Cañedo, “Digital sliding-mode sensorless control for surface-mounted PMSM,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 137-151, Feb. 2014. crossref(new window)

3.
J. Fang, X. Zhou, and G. Liu, “Instantaneous torque control of small inductance brushless DC motor,” IEEE Trans. Power Elect., vol. 27, no. 12, pp. 4952-4964, Dec. 2012. crossref(new window)

4.
Z. Feng and P. P. Acarnley, “Extrapolation technique for improving the effective resolution of position encoders in permanent-magnet motor drives,” IEEE Trans. Mechatron., vol. 13, no. 4, pp. 410-415, Aug. 2008. crossref(new window)

5.
P. B. Beccue, S. D. Pekarek, B. J. Deken, and A. C. Koenig, “Compensation for asymmetries and misalignment in a Hall-effect position observer used in PMSM torque-ripple control,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 560-570, Mar./Apr. 2007. crossref(new window)

6.
M. C. Harke, G. D. Donato, F. G. Capponi, T. R. A. Tesch, and R. D. Lorenz, “Disturbance torque and motion state estimation with low-resolution position interfaces using heterodyning observers,” IEEE Trans. Indus. Appli., vol. 44, no. 1, pp. 124-134, Jan/Feb. 2008. crossref(new window)

7.
A. Yoo, S. K. Sul, D. C. Lee, and C.S. Jun, “Novel speed and rotor position estimation strategy using a dual observer for low-resolution position sensors,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2897-2906, Dec. 2009. crossref(new window)

8.
D. M. Lee, D. C. Lim, and H. J. Ahn, “Position linearisation scheme for permanent magnet synchronous motor drive of washing machine using low-resolution hall sensors,” IET Elect. Letters, vol. 51, no. 22, pp. 1765-1767, Oct. 2015. crossref(new window)

9.
F. G. Capponi, G. Donato, L. Ferraro, O. Honorati, M. C. Harke, and R. D. Lorenz, “AC brushless drive with low-resolution Hall-effect sensors for surface-mounted PM machines,” IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 526–535, Mar./Apr. 2006. crossref(new window)

10.
Z. M. Dalala, Y. H. Cho, and J. H. Lai, “Enhanced vector tracking observer for rotor position estimation for PMSM drives with low resolution Hall-effect position sensors,” IEEE Inter. Electric Machines & Drives Conf., pp. 484-491, 2013.

11.
T. Payne, S. Rice, D. Able, and D. Dickerson, “Electronic washer control including automatic load size determination, fabric blend determination and adjustable washer means,” US Patent 5161393A, 1992.

12.
F. Altinier, T. Girotto, and M. Giovagnoni, “Method for estimating the moment of inertia of the rotating unit of a washing machine, and washing machine implementing said method,” US Patent 8336378, 2012.

13.
Z. Aydogmus and O. Aydogmus, "A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation," Measurement Elsevier, vol. 63, pp. 152-158, March 2015. crossref(new window)

14.
N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters,” IEEE Trans. Indus. Elect., vol. 61, no. 12, pp. 6574-6582, Dec. 2014. crossref(new window)

15.
Y. J. Han, C.Y. Lee, and Y. Sun, “A study on the sensor applications for position detection and guideway monitoring in high speed Maglev,” Modern Mech. Engineering, vol. 4, no. 4, pp.165-174, 2014. crossref(new window)

16.
Z. Chen, Y. Fu, and C. C. Mi, “State of charge estimation of lithium-ion batteries in electric drive vehicles using extended Kalman filtering,” IEEE Trans. Vehicular Technology, vol. 62, no. 3, pp.1020-1030, March 2013. crossref(new window)

17.
H. W. Sim, J. S. Lee, and K. B. Lee, “On-line parameter estimation of interior permanent magnet synchronous motor using an extended Kalman filter,” Journal of Electr. Eng. Tech., vol. 9, no. 2, pp. 600-608, March. 2014. crossref(new window)