JOURNAL BROWSE
Search
Advanced SearchSearch Tips
6-18 GHz Reactive Matched GaN MMIC Power Amplifiers with Distributed L-C Load Matching
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
6-18 GHz Reactive Matched GaN MMIC Power Amplifiers with Distributed L-C Load Matching
Kim, Jihoon; Choi, Kwangseok; Lee, Sangho; Park, Hongjong; Kwon, Youngwoo;
  PDF(new window)
 Abstract
A commercial GaN process is used to implement 6-18 GHz wideband power amplifier (PA) monolithic microwave integrated circuits (MMICs). GaN HEMTs are advantageous for enhancing RF power due to high breakdown voltages. However, the large-signal models provided by the foundry service cannot guarantee model accuracy up to frequencies close to their maximum oscillation frequency (). Generally, the optimum output load point of a PA varies severely according to frequency, which creates difficulties in generating watt-level output power through the octave bandwidth. This study overcomes these issues by the development of in-house large-signal models that include a thermal model and by applying distributed L-C output load matching to reactive matched amplifiers. The proposed GaN PAs have successfully accomplished output power over 5 W through the octave bandwidth.
 Keywords
Gallium Nitride (GaN) Process;Distributed L-C;Large-Signal Model;Monolithic Microwave Integrated Circuit (MMIC);Wideband Power Amplifier;
 Language
English
 Cited by
1.
An $X$ -Band Pulsed Load Modulation Transmitter With Multilevel Envelope Delta–Sigma Modulations, IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 11, 3643  crossref(new windwow)
 References
1.
Y. M. Shin, A. Baig, L. R. Barnett, W. C. Tsai, and N. C. Luhmann, "System design analysis of a 0.22-THz sheetbeam traveling-wave tube amplifier," IEEE Transactions on Electron Devices, vol. 59, no. 1, pp. 234-240, Jan. 2012. crossref(new window)

2.
A. R. Gilmour, Microwave Tubes, Boston, MA: Artech House, 1986.

3.
A. Katz, B. Eggleston, and J. MacDonald, "GaN SSPA for UHF space applications," in Proceedings of IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, 2013, pp. 1-4.

4.
B. M. Green, V. Tilak, S. Lee, H. Kim, J. A. Smart, K. J. Webb, J. R. Shealy, and L. F. Eastman, "High-power broad-band AlGaN/GaN HEMT MMICs on SiC substrates," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2486-2491, Dec. 2001. crossref(new window)

5.
S. Nuttinck, E. Gebara, J. Laskar, and H. M. Harris, "Study of self-heating effects, temperature-dependent modeling, and pulsed load-pull measurements on GaN HEMTs," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2413-2420, Dec. 2001. crossref(new window)

6.
I. Angelov, H. Zirath, and N. Rosman, "A new empirical nonlinear model for HEMT and MESFET devices," IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2258-2266, Dec. 1992. crossref(new window)

7.
L. S. Liu, J. G. Ma, and G. I. Ng, "Electrothermal largesignal model of III-V FETs including frequency dispersion and charge conservation," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3106-3117, Dec. 2009. crossref(new window)

8.
Keysight Technologies, "Angelov_Model (Angelov (Chalmers) Nonlinear GaAsFET Model)," 2013; http://edadocs. software.keysight.com/pages/viewpage.action?pageId= 39817918.

9.
I. Angelov, L. Bengtsson, and M. Garcia, "Extensions of the Chalmers nonlinear HEMT and MESFET model," IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10 , pp. 1664-1674 , Oct. 1996. crossref(new window)

10.
J. Joh, J. A. del Alamo, U. Chowdhury, T. M. Chou, H. Q. Tserng, and J. L. Jimenez, "Measurement of channel temperature in GaN high-electron mobility transistors," IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 2895- 2901, Dec. 2009. crossref(new window)

11.
U. Schmid, H. Sledzik, P. Schuh, J. Schroth, M. Oppermann, P. Bruckner, F. van Raay, R. Quay, and M. Seel-mann-Eggebert, "Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defense AESA applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 3043-3051, Aug. 2013. crossref(new window)

12.
Y. Niida, Y. Kamada, T. Ohki, S. Ozaki, K. Makiyama, N. Okamoto, M. Sato, S. Masuda, and K. Watanabe, "X-Ku wide-bandwidth GaN HEMT MMIC amplifier with small deviation of output power and PAE," in Proceedings of IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA, 2014, pp. 1-4.

13.
G. Mouginot, Z. Ouarch, B. Lefebvre, S. Heckmann, J. Lhortolary, D. Baglieri, et al., "Three stage 6-18 GHz high gain and high power amplifier based on GaN technology," in Proceedings of IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA, 2010, pp. 1392- 1395.

14.
E. Kuwata, K. Yamanaka, H. Koyama, Y. Kamo, T. Kirikoshi, M. Nakayama and Y. Hirano, "C-Ku band ultra broadband GaN MMIC amplifier with 20W output power," in Proceedings of Asia-Pacific Microwave Conference (APMC), Melbourne, Australia, 2011, pp. 1558-1561.

15.
E. Kuwata, K. Yamanaka, T. Kirikoshi, A. Inoue, and Y. Hirano, "C-Ku band 120% relative bandwidth high efficiency high power amplifier using GaN HEMT," in Proceedings of Asia-Pacific Microwave Conference (APMC), Singapore, 2009, pp. 1663-1666.

16.
D. M. Pozar, Microwave Engineering, 4th ed., New York, NY:Wiley, 2012.

17.
S. Lee, H. Park, J. Kim, and Y. Kwon, "A 6-18 GHz GaN pHEMT power amplifier using non-foster matching," in Proceedings of IEEE MTT-S International Microwave Symposium Digest, Phoenix, AZ, 2015, pp. 1-4.