Advanced SearchSearch Tips
Alternative Expressions for Mutual Inductance and Coupling Coefficient Applied in Wireless Power Transfer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Alternative Expressions for Mutual Inductance and Coupling Coefficient Applied in Wireless Power Transfer
Kim, Gunyoung; Lee, Bomson;
  PDF(new window)
Alternative analytic expressions for the mutual inductance () and coupling coefficient (k) between circular loops are presented using more familiar and convenient expressions that represent the property of reciprocity clearly. In particular, the coupling coefficients are expressed in terms of structural dimensions normalized to a geometric mean of radii of two loops. Based on the presented expressions, various aspects of the mutual inductances and coupling coefficients, including the regions of positive, zero, and negative value, are examined with respect to their impacts on the efficiency of wireless power transmission.
Coupling Coefficient;Magnetic Flux;Mutual Inductance;Transfer Efficiency;Wireless Power Transfer;
 Cited by
An Effective Experimental Optimization Method for Wireless Power Transfer System Design Using Frequency Domain Measurement, Journal of Electromagnetic Engineering and Science, 2017, 17, 4, 208  crossref(new windwow)
A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonance," Science, vol. 317, no. 5834, pp. 83-86, 2007. crossref(new window)

S. Raju, R. Wu, M. Chan, and C. P. Yue, "Modeling of mutual coupling between planar inductors in wireless power applications," IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 481-490, 2014. crossref(new window)

H. D. Lang, A. Ludwig, and C. D. Sarris, "Convex optimization of wireless power transfer systems with multiple transmitters," IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4623-4636, 2014. crossref(new window)

R. Zhang, R. G. Maunder, and L. Hanzo, "Wireless information and power transfer: from scientific hypothesis to engineering practice," IEEE Communications Magazine, vol. 53, no. 8, pp. 99-105, 2015. crossref(new window)

Y. Zhang, T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, "Employing load coils for multiple loads of resonant wireless power transfer," IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6174-6181, 2015. crossref(new window)

F. W. Grover, Inductance Calculations. New York: Dover, 1964.

C. R. Paul, Inductance: Loop and Partial. Hoboken, NJ: Wiley, 2010.

J. T. Conway, "Inductance calculations for noncoaxial coils using Bessel functions," IEEE Transactions on Magnetics, vol. 43, no. 3, pp. 1023-1034, 2007. crossref(new window)

S. I. Babic and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE Transactions on Magnetics, vol. 44, no. 7, pp. 1743-1750, 2008. crossref(new window)

C. Kim and B. Lee, "Analysis of magnetic coupled wireless power transmissions considering radiation loss," Journal of the Korea Electromagnetic Engineering Society, vol. 11, no. 3, pp. 156-160, 2011. crossref(new window)