Advanced SearchSearch Tips
Analysis of Efficiencies for Multiple-Input Multiple-Output Wireless Power Transfer Systems
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Efficiencies for Multiple-Input Multiple-Output Wireless Power Transfer Systems
Kim, Sejin; Lee, Bomson;
  PDF(new window)
Wireless power transfer (WPT) efficiencies for multiple-input multiple-output (MIMO) systems are formulated with a goal of achieving their maximums using Z matrices. The maximum efficiencies for any arbitrarily given configurations are obtained using optimum loads, which can be determined numerically through adequate optimization procedures in general. For some simpler special cases (single-input single-output, single-input multiple-output, and multiple-input single-output) of the MIMO systems, the efficiencies and optimum loads to maximize them can be obtained using closed-form expressions. These closed-form solutions give us more physical insight into the given WPT problem. These efficiencies are evaluated theoretically based on the presented formulation and also verified with comparisons with circuit- and EM-simulation results. They are shown to lead to a good agreement. This work may be useful for construction of the wireless Internet of Things, especially employed with energy autonomy.
Coupling Coefficient;Optimum Load Resistance;Transfer Efficiency;Wireless Power Transfer;Z Matrix;
 Cited by
B. K. Chung and H. T. Chuah, "Design and construction of a multipurpose wideband anechoic chamber," IEEE Antennas and Propagation Magazine, vol. 45, no. 6, pp. 41-47, 2003.

A. Kazemzadeh and A. Karlsson, "Capacitive circuit method for fast and efficient design of wideband radar absorbers," IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2307-2314, 2009. crossref(new window)

J. Tak, Y. Lee, and J. Choi, "Design of a metamaterial absorber for ISM applications," Journal of Electromagnetic Engineering and Science, vol. 13, no. 1, pp. 1-7, 2013. crossref(new window)

X. Shen, T. Cui, J. Zhao, H, Ma. W. Jiang, and H. Li, "Polarization independent wide-angle triple-band metamaterial absorber," Optics Express, vol. 19, no. 10, pp. 9401-9407, 2011. crossref(new window)

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, vol. 110, no. 1, article no. 014909, 2011.

R. L. Fante and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas Propagation, vol. 36, no.10, pp. 1443-1454, 1988. crossref(new window)

A. P. Sohrab and Z. Atlasbaf, "A circuit analog absorber with optimum thickness and response in X-band," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 276-279, 2013. crossref(new window)

G. R. Zhang, P. H. Zhou, H. B. Zhang, L. B. Zhang, J. L. Xie, and L. J. Deng, "Analysis and design of triple-band high-impedance surface absorber with periodic diversified impedance," Journal of Applied Physics, vol. 114, no. 16, article no. 164103, 2013.

B. K. Kim and B. Lee, "Design of metamaterial-inspired wideband absorber at X-band adopting trumpet structures," Journal of Electromagnetic Engineering and Science, vol. 14, no. 3, pp. 314-316, 2014. crossref(new window)

G. Kim and B. Lee, "Design of wideband absorbers using RLC screen," Electronics Letters, vol. 51, no. 11, pp. 834-836, 2015. crossref(new window)

B. K. Kim and B. Lee, "Wideband absorber at X-band adoption resistive trumpet structures," Electronics Letters, vol. 50, no. 25, pp. 1957-1959, 2014. crossref(new window)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, "Low-cost metamaterial absorbers for sub-GHz wireless system," IEEE Antennas and Wireless Propagation Letters, vol.13, pp. 27-30, 2014. crossref(new window)

H. Zhang, P. Zhou, H. Lu, Y. Xu, J. Xie, and L. Deng, "Soft-magnetic-film based metamaterial absorber" Electronics Letters, vol. 48, no. 8, pp. 435-437, 2012. crossref(new window)

S. Ghosh and K. V. Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 511-514, 2015. crossref(new window)

Y. Cheng, H. Yang, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," Applied Physics A, vol. 102, no. 1, pp. 99-103, 2011. crossref(new window)