JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material
Kim, Dong-Young; Yoon, Young-Ho; Jo, Kwan-Jun; Jung, Gil-Bong; An, Chong-Chul;
  PDF(new window)
 Abstract
This paper reports on a study of LiNiZn-ferrite composite as a radiation absorbent material (RAM). The electromagnetic (EM) wave absorbers are composed of an EM wave absorbing material and a polymeric binder. The surface morphology, chemical composition, weight percent of the ferrite composite of the toroid sample, magnetic properties, and return loss are investigated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and network analyzer. For preparing the absorbing sheet, chlorinated polyethylene (CPE) is used as a polymeric binder. The EM wave absorption properties of the prepared samples were studied at 4 - 8 GHz. We can confirm the effects of the thickness of the samples for absorption properties. An absorption bandwidth of more than a 10-dB return loss shifts toward a lower frequency range along with an increase in the thickness of the absorber.
 Keywords
Electromagnetic Wave Absorber;Ferrite Composite;LiNiZn-Ferrite;Return Loss;
 Language
English
 Cited by
 References
1.
C. M. Choi and D. I. Kim, "A study on development of EM wave absorber using $TiO_2$ for automotive radar in cars," Journal of the Korean Institute of Electromagnetic Engineering and Science, vol. 8, no. 3, pp. 110-113, 2008. crossref(new window)

2.
C. M. Choi, D. I. Kim, S. H. Je, and Y. S. Choi, "A study on electromagnetic wave absorber for the collision-avoidance radar," Current Applied Physics, vol. 7, no. 5, pp. 586-589, 2007. crossref(new window)

3.
S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, "Complex permittivity and microwave absorption properties of $BaTiO_3$-polyaniline composite," Materials Science and Engineering B, vol. 123, no. 2, pp. 167-171, 2005. crossref(new window)

4.
S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, "Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites," Journal of Magnetism and Magnetic Materials, vol. 309, no. 1, pp. 20-24, 2007. crossref(new window)

5.
K. Khan and S. Rehman, "Microwave absorbance properties of zirconium-manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers," Materials Research Bulletin, vol. 50, pp. 454-461, 2014. crossref(new window)

6.
Y. B. Feng, T. Qiu, and C. Y. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," Journal of Magnetism and Magnetic Materials, vol. 318, no. 1, pp. 8-13, 2007. crossref(new window)

7.
W. Meng, D. Yuping, L. Shunhua, L. Xiaogang, and J. Zhijiang, "Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers," Journal of Magnetism and Magnetic Materials, vol. 321, no. 20, pp. 3442-3446, 2009. crossref(new window)

8.
M. S. Kim, E. H. Min, and J. G. Koh, "Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber," Journal of Magnetism and Magnetic Materials, vol. 321, no. 6, pp. 581-585, 2009. crossref(new window)

9.
S. M. Abbas, M. Chandra, A. Verma, R. Chatterjee, and T. C. Goel, "Complex permittivity and microwave absorption properties of a composite dielectric absorber," Composites Part A: Applied Science and Manufacturing, vol. 37, no. 11, pp. 2148-2154, 2006.

10.
C. H. Peng, C. C. Hwang, J. Wan, J. S. Tsai, and S. Y. Chen, "Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method," Materials Science and Engineering B, vol. 117, no, 1, pp. 27-36, 2005. crossref(new window)

11.
A. N. Yusoff and M. H. Abdullah, "Microwave electromagnetic and absorption properties of some LiZn ferrites," Journal of Magnetism and Magnetic Materials, vol. 269, no. 2, pp. 271-280, 2004. crossref(new window)

12.
T. Nakamura, T. Miyamoto, and Y. Yamada, "Complex permeability spectra of polycrystalline Li-Zn ferrite and application to EM-wave absorber," Journal of Magnetism and Magnetic Materials, vol. 256, no. 1, pp. 340-347, 2003. crossref(new window)

13.
Y. Hwang, "Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst," Materials Letters, vol. 60, no. 27, pp. 3277-3280, 2006. crossref(new window)

14.
R. Dosoudil, M. Usakova, J. Franek, J. Slama, and V. Olah, "RF electromagnetic wave absorbing properties of ferrite polymer composite materials," Journal of Magnetism and Magnetic Materials, vol. 304, no. 2, pp. e755-e757, 2006. crossref(new window)

15.
S. G. Bachhav, R. S. Patil, P. B. Ahirrao, A. M. Patil, and D. R. Patil, "Microstructure and magnetic studies of Mg-Ni-Zn-Cu ferrites," Materials Chemistry and Physics, vol. 129, no. 3, pp. 1104-1109, 2011. crossref(new window)

16.
A. C. F. M. Costa, A. P. Diniz, V. J. Silva, R. H. G. A. Kiminami, D. R. Cornejo, A. M. Gama, M. C. Rezende, and L. Gama, "Influence of calcinations temperature on the morphology and magnetic properties of Ni-Zn ferrite applied as an electromagnetic energy absorber," Journal of Alloys and Compounds, vol. 483, no. 1, pp. 563-565, 2009. crossref(new window)

17.
W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, and G. Zou, "Hollow glass microspheres coated with $CoFe_2O_4$ and its microwave absorption property, " Journal of Magnetism and Magnetic Materials, vol. 316, no. 1, pp. 54-58, 2007. crossref(new window)

18.
F. Jin, H. Tong, J. Li, L. Shen, and P. K. Chu, "Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation," Surface & Coatings Technology, vol. 201, no. 1, pp. 292-295, 2006. crossref(new window)

19.
Y. Xie, X. Hong, J. Liu, Z. Le, F. Huang, Y. Qin, et al., "Synthesis and electromagnetic properties of $BaFe_{11.92}(LaNd)_{0.04}O_{19}$/titanium dioxide composites," Material Research Bulletin, vol. 50, pp. 483-489, 2014. crossref(new window)

20.
B. F. Zou, T. D. Zhou, and J. Hu, "Effect of amorphous evolution on structure and absorption properties of FeSiCr alloy powder," Journal of Magnetism and Magnetic Materials, vol. 335, pp. 17-20, 2013. crossref(new window)

21.
Y. Wang, F. Xu, L. Li, H. Liu, H. Qiu, and J. Jiang, "Magnetic properties of La-substituted Ni-Zn-Cr ferrite via rheological phase synthesis," Materials Chemistry and Physics, vol. 112, no. 3, pp. 769-773, 2008. crossref(new window)

22.
T. G. Lee, J. B. Kim, and T. H. Noh, "Electromagnetic wave absorption characteristics of nanocrystalline FeCuNbSiB alloy flakes/polymer composite sheets with different flake thickness," Journal of Magnetics, vol. 14, no. 4, pp. 155-160, 2009. crossref(new window)

23.
X. G. Liu, B. Li, D. Y. Geng, W. B. Cui, F. Yang, Z. G. Xie, D. J. Kang, and Z. D. Zhang, "(Fe, Ni)/C nanocapsules for electromagnetic wave absorber in the whole Ku-band," Carbon, vol. 47, no. 2, pp. 470-474, 2009. crossref(new window)

24.
M. K. Tehrani, A. Ghasemi, M. Moradi, and R. S. Alam, "Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band," Journal of Alloys and Compounds, vol. 509, no. 33, pp. 8398-8400, 2011. crossref(new window)

25.
A. P. Grosvenor, M. C. Biesinger, R. C. Smart, and N. S. McIntyre, "New interpretations of XPS spectra of nickel metal and oxides," Surface Science, vol. 600, no. 9, pp. 1771-1779, 2006. crossref(new window)

26.
T. Yamashita and P. Hayes, "Analysis of XPS spectra of $Fe^{2+}$ and $Fe^{3+}$ ions in oxide materials," Applied Surface Science, vol. 254, no. 8, pp. 2441-2449, 2008. crossref(new window)

27.
M. S. Lin, C. G. Hsu, C. H. Chiang, and C. K. Cho, "Measurement and analysis techniques for designing microwave absorbers," Journal of Chung Cheng Institute of Technology, vol. 43, no. 2, pp. 29-39, 2014.