JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Common Fixed Point for Single and Set-Valued Maps Satisfying OWC Property in IFMS using Implicit Relation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
On Common Fixed Point for Single and Set-Valued Maps Satisfying OWC Property in IFMS using Implicit Relation
Park, Jong Seo;
  PDF(new window)
 Abstract
In this paper, we introduce the notion of single and set-valued maps satisfying OWC property in IFMS using implicit relation. Also, we obtain common fixed point theorems for single and set-valued maps satisfying OWC properties in IFMS using implicit relation.
 Keywords
Common fixed point;Occasionally weakly compatible map;Implicit relation.;
 Language
English
 Cited by
 References
1.
Z. Deng, “Fuzzy pseudo-metric spaces,” Journal of Mathe maticalAnalysis and Applications, vol. 86, no. 1, pp. 74-95, 1982. http://dx.doi.org/10.1016/0022-247X(82)90255-4 crossref(new window)

2.
M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 27, no. 3, pp. 385-389, 1988. http://dx.doi.org/10.1016/0165-0114(88)90064-4 crossref(new window)

3.
O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 12, no. 3, pp. 215-229, 1984. http://dx.doi.org/10.1016/0165-0114(84)90069-1 crossref(new window)

4.
I. Kubiaczyk and S. Sharma, “Common coincidence point in fuzzy metric spaces,” Journal of Fuzzy Mathematics, vol. 11, no. 1, pp. 1-5, 2003.

5.
B. Singh and M. S. Chauhan, “Common fixed points of compatible maps in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 115, no. 3, pp. 471-475, 2000. http://dx.doi.org/10.1016/S0165-0114(98)00099-2 crossref(new window)

6.
G. Jungck, “Compatible mappings and common fixed points,” International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 4, pp. 771-779, 1986. http://dx.doi.org/10.1155/S0161171286000935 crossref(new window)

7.
P. Vijayaraju and Z. M. I. Sajath, “Common fixed points of single and multivalued maps in fuzzy metric spaces,” Applied Mathematics, vol. 2, no. 5, pp. 595-599, 2011. http://dx.doi.org/10.4236/am.2011.25079 crossref(new window)

8.
J. H. Park, J. S. Park, and Y. C. Kwun, “A common fixed point theorem in the intuitionistic fuzzy metric space,” in Proceedings of the 2nd International Conference on Advances in Natural Computation (ICNC) and 3rd International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xian, China, 2006, pp. 293-300.

9.
J. S. Park, “Some properties for the compatible mappings in intuitionistic fuzzy metric space,” Far East Journal of Mathematical Sciences, vol. 50, no. 1, pp. 79-86, 2011.

10.
J. S. Park, “On a common fixed point for occasionally weakly semi-compatible hybrid mappings in an intuitionistic fuzzy metric space,” JP Journal of Fixed Point Theory and Applications, vol. 4, no. 1, pp. 1-10, 2009.

11.
B. Schweizer and A. Sklar, “Statistical metric spaces,” Pacific Journal of Mathematics, vol. 10, no. 3, pp. 313-334, 1960. crossref(new window)

12.
J. S. Park, “Fixed point theorems for weakly compatible functions using (JCLR) property in intuitionistic fuzzy metric space,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 4, pp. 296-299, 2012. http://dx.doi.org/10.5391/IJFIS.2012.12.4.296 crossref(new window)

13.
J. S. Park, “Some common fixed point theorems using compatible maps in intuitionistic fuzzy metric space,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 11, no. 2, pp. 108-112, 2011. http://dx.doi.org/10.5391/IJFIS.2011.11.2.108 crossref(new window)