JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Preventive Nutrition and Food Science
  • Volume 20, Issue 4,  2015, pp.221-229
  • Publisher : The Korean Society of Food Science and Nutrition
  • DOI : 10.3746/pnf.2015.20.4.221
 Title & Authors
Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways
Kim, Gi Dae;
  PDF(new window)
 Abstract
Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and ) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.
 Keywords
hesperidin;vascular formation;AKT/mTOR;HUVECs;mouse embryonic stem cells;
 Language
English
 Cited by
1.
Exposure to Zinc Oxide Nanoparticles Induces Neurotoxicity and Proinflammatory Response: Amelioration by Hesperidin, Biological Trace Element Research, 2017, 175, 2, 360  crossref(new windwow)
 References
1.
Franco CA, Liebner S, Gerhardt H. 2009. Vascular morphogenesis: a Wnt for every vessel? Curr Opin Genet Dev 19: 476-483. crossref(new window)

2.
Gordon MS, Mendelson DS, Kato G. 2010. Tumor angiogenesis and novel antiangiogenic strategies. Int J Cancer 126: 1777-1787.

3.
Cristi E, Perrone G, Toscano G, Verzì A, Nori S, Santini D, Tonini G, Vetrani A, Fabiano A, Rabitti C. 2005. Tumour proliferation, angiogenesis, and ploidy status in human colon cancer. J Clin Pathol 58: 1170-1174. crossref(new window)

4.
Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K, Tabayashi K, Shibuya M, Sato Y. 2000. Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 19: 2138-2146. crossref(new window)

5.
Meadows KN, Bryant P, Vincent PA, Pumiglia KM. 2004. Activated Ras induces a proangiogenic phenotype in primary endothelial cells. Oncogene 23: 192-200. crossref(new window)

6.
Wu G, Luo J, Rana JS, Laham R, Sellke FW, Li J. 2006. Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc Res 69: 512-519. crossref(new window)

7.
Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Der CJ, Battle T, Frank DA, Ye K, Murad E, Dubiel W, Soff G, Arbiser JL. 2003. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278: 35501-35507. crossref(new window)

8.
Guru SK, Pathania AS, Kumar S, Ramesh D, Kumar M, Rana S, Kumar A, Malik F, Sharma PR, Chandan BK, Jaglan S, Sharma JP, Shah BA, Tasduq SA, Lattoo SK, Faruk A, Saxena AK, Vishwakarma RA, Bhushan S. 2015. Secalonic acid-D represses HIF-1${\alpha}$/VEGF mediated angiogenesis by regulating the Akt/mTOR/p70S6K signaling cascade. Cancer Res 75: 2886-2896. crossref(new window)

9.
Yang Y, Cong H, Han C, Yue L, Dong H, Liu J. 2015. 12-Deoxyphorbol 13-palmitate inhibits the expression of VEGF and HIF-$1{\alpha}$ in MCF-7 cells by blocking the PI3K/Akt/mTOR signaling pathway. Oncol Rep 34: 1755-1760.

10.
Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. 1985. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87: 27-45.

11.
Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R, Doetschman T. 1988. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102: 471-478.

12.
Li X, Claesson-Welsh L. 2009. Embryonic stem cell models in vascular biology. J Thromb Haemost 7: 53-56. crossref(new window)

13.
Kim GD, Kim GJ, Seok JH, Chung HM, Chee KM, Rhee GS. 2008. Differentiation of endothelial cells derived from mouse embryoid bodies: a possible in vitro vasculogenesis model. Toxicol Lett 180: 166-173. crossref(new window)

14.
Kim GD, Bae SY, Park HJ, Bae K, Lee SK. 2012. Honokiol inhibits vascular vessel formation of mouse embryonic stem cell-derived endothelial cells via the suppression of PECAM and MAPK/mTOR signaling pathway. Cell Physiol Biochem 30: 758-770. crossref(new window)

15.
Benavente-Garcia O, Castillo J. 2008. Update on uses and properties of Citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56: 6185-6205. crossref(new window)

16.
Park HJ, Kim MJ, Ha E, Chung JH. 2008. Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine 15: 147-151. crossref(new window)

17.
Patil JR, Chidambara Murthy KN, Jayaprakasha GK, Chetti MB, Patil BS. 2009. Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J Agric Food Chem 57: 10933-10942. crossref(new window)

18.
Heuer J, Bremer S, Pohl I, Spielmann H. 1993. Development of an in vitro embryotoxicity test using murine embryonic stem cell cultures. Toxicol In Vitro 7: 551-556. crossref(new window)

19.
Scholz G, Pohl I, Genschow E, Klemm M, Spielmann H. 1999. Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tissues Organs 165: 203-211. crossref(new window)

20.
Baker M, Robinson SD, Lechertier T, Barber PR, Tavora B, D'Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K. 2012. Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7: 89-104.

21.
Tozer GM, Kanthou C, Baguley BC. 2005. Disrupting tumour blood vessels. Nat Rev Cancer 5: 423-435. crossref(new window)

22.
Karar J, Maity A. 2011. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4: 51.

23.
Kruger EA, Duray PH, Tsokos MG, Venzon DJ, Libutti SK, Dixon SC, Rudek MA, Pluda J, Allegra C, Figg WD. 2000. Endostatin inhibits microvessel formation in the ex vivo rat aortic ring angiogenesis assay. Biochem Biophys Res Commun 268: 183-191. crossref(new window)

24.
Beecher GR. 2003. Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133: 3248S-3254S.

25.
Fresco P, Borges F, Diniz C, Marques MP. 2006. New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26: 747-766. crossref(new window)

26.
Fotsis T, Pepper MS, Aktas E, Breit S, Rasku S, Adlercreutz H, Wahala K, Montesano R, Schweigerer L. 1997. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res 57: 2916-2921.

27.
Cao Y, Cao R, Brakenhielm E. 2002. Antiangiogenic mechanisms of diet-derived polyphenols. J Nutr Biochem 13: 380-390. crossref(new window)

28.
Tosetti F, Ferrari N, De Flora S, Albini A. 2002. 'Angioprevention': angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J 16: 2-14. crossref(new window)

29.
Dorai T, Aggarwal BB. 2004. Role of chemopreventive agents in cancer therapy. Cancer Lett 215: 129-140. crossref(new window)

30.
Tong YG, Zhang XW, Geng MY, Yue JM, Xin XL, Tian F, Shen X, Tong LJ, Li MH, Zhang C, Li WH, Lin LP, Ding J. 2006. Pseudolarix acid B, a new tubulin-binding agent, inhibits angiogenesis by interacting with a novel binding site on tubulin. Mol Pharmacol 69: 1226-1233. crossref(new window)

31.
Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100: 57-70. crossref(new window)

32.
Chen SH, Murphy DA, Lassoued W, Thurston G, Feldman MD, Lee WM. 2008. Activated STAT3 is a mediator and biomarker of VEGF endothelial activation. Cancer Biol Ther 7: 1994-2003. crossref(new window)

33.
Shiojima I, Walsh K. 2002. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90: 1243-1250. crossref(new window)

34.
Cho DH, Choi YJ, Jo SA, Ryou J, Kim JY, Chung J, Jo I. 2006. Troglitazone acutely inhibits protein synthesis in endothelial cells via a novel mechanism involving protein phosphatase 2A-dependent p70 S6 kinase inhibition. Am J Physiol Cell Physiol 291: C317-C326. crossref(new window)

35.
Hwang M, Perez CA, Moretti L, Lu B. 2008. The mTOR signaling network: insights from its role during embryonic development. Curr Med Chem 15: 1192-1208. crossref(new window)

36.
Foster KG, Acosta-Jaquez HA, Romeo Y, Ekim B, Soliman GA, Carriere A, Roux PP, Ballif BA, Fingar DC. 2010. Regulation of mTOR complex 1 (mTORC1) by raptor $Ser^{863}$ and multisite phosphorylation. J Biol Chem 285: 80-94. crossref(new window)