Advanced SearchSearch Tips
Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Preventive Nutrition and Food Science
  • Volume 20, Issue 4,  2015, pp.284-291
  • Publisher : The Korean Society of Food Science and Nutrition
  • DOI : 10.3746/pnf.2015.20.4.284
 Title & Authors
Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality
Lee, Hyun Jung; Son, Heung Soo; Park, Chung; Suh, Hyung Joo;
  PDF(new window)
In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60oC, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50oC and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability.
cyclo-His-Pro (CHP);flavourzyme;ultrafiltration;functionality;yeast hydrolysate;
 Cited by
Koh JH, Yu KW, Suh HJ. 2002. Biological activities of Saccharomyces cerevisiae and fermented rice bran as feed additives. Lett Appl Microbiol 35: 47-51. crossref(new window)

Hilton CW, Prasad C, Vo P, Mouton C. 1992. Food contains the bioactive peptide, cyclo(His-Pro). J Clin Endocrinol Metab 75: 375-378.

Mizuma H, Legardeur BY, Prasad C, Hilton CW. 1996. The bioactive peptide cyclo (His-Pro) may be absorbed following ingestion of nutritional supplements that contain it. J Am Coll Nutr 15: 175-179. crossref(new window)

Hwang IK, Go VL, Harris DM, Yip I, Kang KW, Song MK. 2003. Effects of cyclo (his-pro) plus zinc on glucose metabolism in genetically diabetic obese mice. Diabetes Obes Metab 5: 317-324. crossref(new window)

Song MK, Rosenthal MJ, Hong S, Harris DM, Hwang I, Yip I, Golub MS, Ament ME, Go VL. 2001. Synergistic antidiabetic activities of zinc, cyclo (His-Pro), and arachidonic acid. Metabolism 50: 53-59. crossref(new window)

Song MK, Rosenthal MJ, Song AM, Yang H, Ao Y, Yamaguchi DT. 2005. Raw vegetable food containing high cyclo (his-pro) improved insulin sensitivity and body weight control. Metabolism 54: 1480-1489. crossref(new window)

Morley JE, Levine AS, Prasad C. 1981. Histidyl-proline diketopiperazine decreases food intake in rats. Brain Res 210: 475-478. crossref(new window)

Steiner H, Wilber JF, Prasad C, Rogers D, Rosenkranz RT. 1989. Histidyl proline diketopiperazine (Cyclo [His-Pro]) in eating disorders. Neuropeptides 14: 185-189. crossref(new window)

Song MK, Rosenthal MJ, Song AM, Uyemura K, Yang H, Ament ME, Yamaguchi DT, Cornford EM. 2009. Body weight reduction in rats by oral treatment with zinc plus cyclo-(His-Pro). Br J Pharmacol 158: 442-450. crossref(new window)

Tsuruki T, Kishi K, Takahashi M, Tanaka M, Matsukawa T, Yoshikawa M. 2003. Soymetide, an immunostimulating peptide derived from soybean ${\beta}$-conglycinin, is an fMLP agonist. FEBS Lett 540: 206-210. crossref(new window)

Pihlanto-Leppala A. 2000. Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci Technol 11: 347-356. crossref(new window)

Mendis E, Rajapakse N, Kim SK. 2005. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem 53: 581-587. crossref(new window)

Suetsuna K, Maekawa K, Chen JR. 2004. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J Nutr Biochem 15: 267-272. crossref(new window)

Klompong V, Benjakul S, Kantachote D, Shahidi F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 102: 1317-1327. crossref(new window)

Visich JE, Byron PR. 1996. High-pressure liquid chromatographic assay for the determination of thyrotropin-releasing hormone and its common metabolites in a physiological salt solution circulated through the isolated perfused rat lung. J Pharm Biomed Anal 15: 105-110. crossref(new window)

Pearce KN, Kinsella JE. 1978. Emulsifying properties of proteins: evaluation of a turbidimetric technique. J Agric Food Chem 26: 716-723. crossref(new window)

Sathe SK, Salunkhe DK. 1981. Functional properties of the Great Northern bean (Phaseolus vulgaris L.) proteins: emulsion, foaming, viscosity, and gelation properties. J Food Sci 46: 71-81. crossref(new window)

Adler-Nissen J. 1982. Limited enzymic degradation of proteins: A new approach in the industrial application of hydro lases. J Chem Technol Biotechnol 32: 138-156.

Ahmed FE, Hall AE, DeMason DA. 1992. Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am J Bot 79: 784-791. crossref(new window)

Prasad C, Peterkofsky A. 1976. Demonstration of pyroglutamylpeptidase and amidase activities toward thyrotropinreleasing hormone in hamster hypothalamus extracts. J Biol Chem 251: 3229-3234.

Perry TL, Richardson KS, Hansen S, Friesen AJD. 1965. Identification of the diketopiperazine of histidylproline in human urine. J Biol Chem 240: 4540-4542.

Moss J, Bundgaard H. 1990. Kinetics and mechanism of the facile cyclization of histidyl-prolineamide to cyclo (His-Pro) in aqueous solution and the competitive influence of human plasma. J Pharm Pharmacol 42: 7-12. crossref(new window)

Li Z, Youravong W, Kittikun AH. 2006. Separation of proteases from yellowfin tuna spleen by ultrafiltration. Bioresour Technol 97: 2364-2370. crossref(new window)

Templin TL, Johnston DB, Singh V, Tumbleson ME, Belyea RL, Rausch KD. 2006. Membrane separation of solids from corn processing streams. Bioresour Technol 97: 1536-1545. crossref(new window)

Ghosh R, Cui ZF. 2000. Protein purification by ultrafiltration with pre-treated membrane. J Membr Sci 167: 47-53. crossref(new window)

Deeslie WD, Cheryan M. 1992. Fractionation of soy protein hydrolysates using ultrafiltration membranes. J Food Sci 57: 411-413. crossref(new window)

Sannier F, Lecoeur C, Zhao Q, Garreau I, Piot JM. 1996. Separation of hemoglobin and myoglobin from yellowfin tuna red muscle by ultrafiltration: effect of pH and ionic strength. Biotechnol Bioeng 52: 501-506. crossref(new window)

Berot S, Popineau Y, Compoint JP, Blassel C, Chaufer B. 2001. Ultrafiltration to fractionate wheat polypeptides. J Chromatogr B: Biomed Sci Appl 753: 29-35. crossref(new window)

Kubec R, Svobodova M, Velisek J. 1999. Gas chromatographic determination of S-alk(en)ylcysteine sulfoxides. J Chromatogr A 862: 85-94. crossref(new window)

Ueda Y, Tsubuku T, Miyajima R. 1994. Composition of sulfur-containing components in onion and their flavor characters. Biosci Biotechnol Biochem 58: 108-110. crossref(new window)

Casella MLA, Whitaker JR. 1990. Enzymatically and chemically modified zein for improvement of functional properties. J Food Biochem 14: 453-475. crossref(new window)

Drago S, Gonzalez R. 2000. Foaming properties of enzymatically hydrolysed wheat gluten. Innov Food Sci Emerg Technol 1: 269-273. crossref(new window)

Nielsen PM. 1997. Functionality of protein hydrolysates. In Food Proteins and Their Applications. Damodaran S, Paraf A, eds. Marcel Dekker Inc., New York, NY, USA. p 443-472.

Gbogouri G, Linder M, Fanni J, Parmentier M. 2004. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J Food Sci 69: C615-C622. crossref(new window)

Turgeon SL, Gauthier SF, Paquin P. 1991. Interfacial and emulsifying properties of whey peptide fractions obtained with a two-step ultrafiltration process. J Agric Food Chem 39: 673-676. crossref(new window)

Li X, Li Y, Hua Y, Qiu A, Yang C, Cui S. 2007. Effect of concentration, ionic strength and freeze-drying on the heatinduced aggregation of soy proteins. Food Chem 104: 1410-1417. crossref(new window)

Sikorski ZE, Naczk M. 1981. Modification of technological properties of fish protein concentrates. Crit Rev Food Sci Nutr 14: 201-230. crossref(new window)

Zayas JF. 1997. Functionality of proteins in food. Springer-Verlag, Berlin, Germany. p 260-309.