Heuristic Physical Theory of Diffraction for Impedance Polygon

- Journal title : International Journal of Ocean System Engineering
- Volume 3, Issue 1, 2013, pp.22-32
- Publisher : Korean Society of Ocean Engineers
- DOI : 10.5574/IJOSE.2013.3.1.022

Title & Authors

Heuristic Physical Theory of Diffraction for Impedance Polygon

Lee, Keunhwa; Park, Sanghyun; Kim, Kookhyun; Seong, Woojae;

Lee, Keunhwa; Park, Sanghyun; Kim, Kookhyun; Seong, Woojae;

Abstract

A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is based on Ufimtsev's three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers' model presented in electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heuristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple PTD formula is derived as a supplement to the physical optics formula.

Keywords

Physical Theory of Diffraction;Kirchhoff Approximation;Impedance Polygon;Heuristic Approach;Physical Optics;

Language

English

References

2.

R. G. Kouyoumjian, P. H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE. 62 (1974) 1448-1461.

3.

P. Ya. Ufimtsev, Fundamentals of the Physical Theory of Diffraction , Wiley-IEEE, 2007.

4.

G. D. Maliuzhinets, Excitation, reflection and emission of surface waves from a wedge with given face impedances, Sov. Phys. Dokl. 3 (1958) 752-755.

5.

M. I. Herman, J. L. Volakis, T. B. A. Senior, Analytic expressions for a function occurring in diffraction theory, IEEE Trans. Antennas Propag. AP-35 (1987) 1083-1086.

6.

R. J. Luebbers, Finite conductivity uniform UTD versus knife diffraction prediction of propagation path loss, IEEE Trans. Antennas Propag. AP-32 (1984) 70-76.

7.

R. J. Luebbers, A heuristic UTD slope diffraction coefficient for rough lossy wedges, IEEE Trans. Antennas Propag. 37 (1989) 206-211.

8.

P. Holm, A new heuristic UTD diffraction coefficient for non-perfectly conducting wedges, IEEE Trans. Antennas Propag. 48 (2000) 1211- 1219.

9.

H. M. El-Sallabi, I. T. Rekanos, P. Vainikainen, A new heuristic diffraction coefficient for dielectric wedges at normal incidence, IEEE Antennas Wireless Propag. Lett. 1 (2002) 165-168.

10.

H. M. El-Sallabi, P. Vainikainen, Improvement to diffraction coefficient for non-perfectly conducting wedges, IEEE Trans. Antennas Propag. 53 (2005) 3105-3109.

11.

D.a N. Schettino, F. Moreira, K. Borges, C. Rego, Novel Heuristic UTD Coefficients for the Characterization of Radio Channels, IEEE Trans. on Magnetics. 43 (2007) 1301-1304.

12.

S. K. Soni, A. Bhattacharya, New heuristic diffraction coefficient for modeling of wireless channel, Prog. in Electromag. Res. 12 (2010) 125-137.

13.

T. Lertwiriyaprapa, P. H. Pathak, J. L. Volakis, An approximate UTD ray solution for the radiation and scattering by antennas near a junction between two different thin planar material slab on ground plane, Prog. in Electromag. Res. 102 (2010) 227-248.

14.

Sanjay Soni, Amitabha Bhattacharya, Novel three-dimensional dyadic diffraction coefficient for wireless channel, Microwave and Opt. Tech. Lett. 52 (2010) 2132-2136.

15.

Daniela N. Schettino, Fernando J. S. Moreira, Cassio G. Rego, Heuristic UTD Coefficients for electromagnetic scattering by lossy conducting wedges, Microwave and Opt. Tech. Lett. 52 (2010) 2657-2662.

16.

Ayza Ghorbani, Ali Tajvidy, Emad Torabi, Reza Arablouei, A New Uniform Theory of Diffraction Based Model for Multiple Building Diffraction in the Presence of Trees, Electromagnetics. 31 (2011) 127-146.

17.

J. F. Legendre, T. Marsault, T. Vele, D. Cueff, Heuristic uniform 2D double wedge diffraction based on generalized Fresnel integral, Microwave and Opt. Tech. Lett. 53 (2011) 1841-1846.

18.

D. Klement, J. Preissner, V. Stein, Special problems in applying the physical optics method for backscatter computation of complicated objects, IEEE Trans. Antennas Propag. 36 (1988) 228-237.

19.

K. Kim, J. Cho, J. Kim, D. Cho, A fast esti-mation of sonar cross section of acoustically large and complex underwater targets using a deterministic scattering center model, Appl. Acoust. 70 (2009) 653-660.

20.

K. Kim, J. Kim, D. Cho, W. Seong, Applying time domain physical optics to acoustic wave backscattering problem, Appl. Acoust. 71 (2010) 321-327.

21.

P. Ya. Ufimtsev, Elementary edge waves and the physical theory of diffraction, Electromagnetics. 11 (1991) 127-160.

23.

K. Lee, W. Seong, Y. Joo, Modeling of scat-tering from targets in an oceanic waveguide us-ing Kirchhoff/diffraction method, J. Acoust. Soc. Am. 123 (2008) 3757.

24.

K. Lee, W. Seong, Time-domain Kirchhoff model for acoustic scattering from an imped-ance polygon facet, J. Acoust. Soc. Am. 126 (2009) EL14.

25.

SYSNOISE Rev 5.6, Users Manual, LMS In-ternational N.V.