JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Heuristic Physical Theory of Diffraction for Impedance Polygon
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Heuristic Physical Theory of Diffraction for Impedance Polygon
Lee, Keunhwa; Park, Sanghyun; Kim, Kookhyun; Seong, Woojae;
  PDF(new window)
 Abstract
A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is based on Ufimtsev's three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers' model presented in electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heuristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple PTD formula is derived as a supplement to the physical optics formula.
 Keywords
Physical Theory of Diffraction;Kirchhoff Approximation;Impedance Polygon;Heuristic Approach;Physical Optics;
 Language
English
 Cited by
 References
1.
J. B. Keller, Geometrical theory of diffraction, J. Opt. Soc. Amer. 52 (1962) 116-130. crossref(new window)

2.
R. G. Kouyoumjian, P. H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE. 62 (1974) 1448-1461. crossref(new window)

3.
P. Ya. Ufimtsev, Fundamentals of the Physical Theory of Diffraction , Wiley-IEEE, 2007.

4.
G. D. Maliuzhinets, Excitation, reflection and emission of surface waves from a wedge with given face impedances, Sov. Phys. Dokl. 3 (1958) 752-755.

5.
M. I. Herman, J. L. Volakis, T. B. A. Senior, Analytic expressions for a function occurring in diffraction theory, IEEE Trans. Antennas Propag. AP-35 (1987) 1083-1086.

6.
R. J. Luebbers, Finite conductivity uniform UTD versus knife diffraction prediction of propagation path loss, IEEE Trans. Antennas Propag. AP-32 (1984) 70-76.

7.
R. J. Luebbers, A heuristic UTD slope diffraction coefficient for rough lossy wedges, IEEE Trans. Antennas Propag. 37 (1989) 206-211. crossref(new window)

8.
P. Holm, A new heuristic UTD diffraction coefficient for non-perfectly conducting wedges, IEEE Trans. Antennas Propag. 48 (2000) 1211- 1219. crossref(new window)

9.
H. M. El-Sallabi, I. T. Rekanos, P. Vainikainen, A new heuristic diffraction coefficient for dielectric wedges at normal incidence, IEEE Antennas Wireless Propag. Lett. 1 (2002) 165-168. crossref(new window)

10.
H. M. El-Sallabi, P. Vainikainen, Improvement to diffraction coefficient for non-perfectly conducting wedges, IEEE Trans. Antennas Propag. 53 (2005) 3105-3109. crossref(new window)

11.
D.a N. Schettino, F. Moreira, K. Borges, C. Rego, Novel Heuristic UTD Coefficients for the Characterization of Radio Channels, IEEE Trans. on Magnetics. 43 (2007) 1301-1304. crossref(new window)

12.
S. K. Soni, A. Bhattacharya, New heuristic diffraction coefficient for modeling of wireless channel, Prog. in Electromag. Res. 12 (2010) 125-137. crossref(new window)

13.
T. Lertwiriyaprapa, P. H. Pathak, J. L. Volakis, An approximate UTD ray solution for the radiation and scattering by antennas near a junction between two different thin planar material slab on ground plane, Prog. in Electromag. Res. 102 (2010) 227-248. crossref(new window)

14.
Sanjay Soni, Amitabha Bhattacharya, Novel three-dimensional dyadic diffraction coefficient for wireless channel, Microwave and Opt. Tech. Lett. 52 (2010) 2132-2136. crossref(new window)

15.
Daniela N. Schettino, Fernando J. S. Moreira, Cassio G. Rego, Heuristic UTD Coefficients for electromagnetic scattering by lossy conducting wedges, Microwave and Opt. Tech. Lett. 52 (2010) 2657-2662. crossref(new window)

16.
Ayza Ghorbani, Ali Tajvidy, Emad Torabi, Reza Arablouei, A New Uniform Theory of Diffraction Based Model for Multiple Building Diffraction in the Presence of Trees, Electromagnetics. 31 (2011) 127-146. crossref(new window)

17.
J. F. Legendre, T. Marsault, T. Vele, D. Cueff, Heuristic uniform 2D double wedge diffraction based on generalized Fresnel integral, Microwave and Opt. Tech. Lett. 53 (2011) 1841-1846. crossref(new window)

18.
D. Klement, J. Preissner, V. Stein, Special problems in applying the physical optics method for backscatter computation of complicated objects, IEEE Trans. Antennas Propag. 36 (1988) 228-237. crossref(new window)

19.
K. Kim, J. Cho, J. Kim, D. Cho, A fast esti-mation of sonar cross section of acoustically large and complex underwater targets using a deterministic scattering center model, Appl. Acoust. 70 (2009) 653-660. crossref(new window)

20.
K. Kim, J. Kim, D. Cho, W. Seong, Applying time domain physical optics to acoustic wave backscattering problem, Appl. Acoust. 71 (2010) 321-327. crossref(new window)

21.
P. Ya. Ufimtsev, Elementary edge waves and the physical theory of diffraction, Electromagnetics. 11 (1991) 127-160.

22.
A. Sommerfeld, Mathematische Theorie der Diffraction, Math. Ann. 47 (1896) 317-374. crossref(new window)

23.
K. Lee, W. Seong, Y. Joo, Modeling of scat-tering from targets in an oceanic waveguide us-ing Kirchhoff/diffraction method, J. Acoust. Soc. Am. 123 (2008) 3757.

24.
K. Lee, W. Seong, Time-domain Kirchhoff model for acoustic scattering from an imped-ance polygon facet, J. Acoust. Soc. Am. 126 (2009) EL14. crossref(new window)

25.
SYSNOISE Rev 5.6, Users Manual, LMS In-ternational N.V.