JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Method of Moments Approach for Laminar Boundary Layer Flows
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Method of Moments Approach for Laminar Boundary Layer Flows
Kinaci, Omer Kemal; Usta, Onur;
  PDF(new window)
 Abstract
Blasius equation describes the boundary layer formed over a flat plate inside a fluid and this equation is solved numerically by the method of moments which is a type of weighted residual methods. Compared to the traditionally used Runge - Kutta Method, Method of Moments propose a direct solution to Blasius Equation which makes it easier to solve. The obtained solutions show good agreement with the results found in literature and this study aims to demonstrate the power of the method.
 Keywords
Blasius equation;boundary layer theory;method of moments;Falkner-Skan equation;
 Language
English
 Cited by
 References
1.
I. Tani, History of boundary-layer theory, Ann. Rev. Fluid Mech. 9 (1977) 87-111. crossref(new window)

2.
H. Aminikhah, An analytical approximation for solving nonlinear Blasius equation by NHPM, Numerical Methods for Partial Differential Equations, 26 (6) (2010) 1291-1299

3.
J. H. He, Approximate analytical solution of Blasius' equation, Communications in Nonlinear Science & Numerical Simulation, 4 (1) (1999) 75-78 crossref(new window)

4.
B. K. Datta, Analytic solution for the Blasius equation, Indian Journal of Pure and Applied Mathematics, 34 (2) (2003) 237-240

5.
L. Wang, A new algorithm for solving classical Blasius equation, Appl. Math. Comput. 157 (2004) 1-9 crossref(new window)

6.
L. Howarth, On the solution of the laminar boundary layer equations, Proc. Roy. Soc. London A 164 (1938) 547-579. crossref(new window)

7.
U. Filobello-Nino, H. Vazquez-Leal, R. Castaneda- Sheissa, A. Yildirim, L. Hernandez- Martinez, D. Pereyra-Diaz, A. Perez-Sesma, C Hoyos-Reyes, An approximate solution of Blasius equation by using HPM method, Asian Journal of Mathematics & Statistics, 5 (2) (2012) 50-59 crossref(new window)

8.
K. Parand, M. Dehghan, A. Pirkhedri, Sinccollocation method for solving the Blasius equation, Physics Letters A, 373 (44) (2009) 4060-4065 crossref(new window)

9.
J. H. He, A simple perturbation approach to Blasius equation, Applied Mathematics and Computation, 140 (2-3) (2003) 217-222 crossref(new window)

10.
M. Benlahsen, M. Guedda, R. Kersner, The generalized Blasius equation revisited, Mathematical and Computer Modelling, 47 (9-10) (2008) 1063-1076 crossref(new window)

11.
R. Cortell, Numerical solutions of the classical Blasius flat-plate problem, Appl. Math. Comput. 170 (1) (2005) 706-710 crossref(new window)

12.
T. Fang, F. Guob, C. F. Leea, A note on the extended Blasius equation, Applied Mathematics Letters, 19 (7) (2006) 613-617 crossref(new window)

13.
Hartree, D. R., On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer, Proc. Cambridge Philos. Society 33 (1937) 223-239. crossref(new window)

14.
G.V. Rao, Least square and galerkin finite element solution of flow past a flat plate, Int. J. for Numer. Meth. Engng. 11 (1) (1975) 185-190.

15.
A. Asaithambi, A finite-difference method for the Falkner Skan equation, Appl. Math. Comput. 92 (1998) 135-141.

16.
A. Asaithambi, A second-order finitedifference method for the Falkner Skan equation, Appl. Math. Comput. 156 (2004) 779-786. crossref(new window)

17.
A. Asaithambi, Numerical solution of the Falkner- Skan equation using piecewise linear equation, Appl. Math. Comput. 159 (2004) 267-273. crossref(new window)

18.
A. Asaithambi, A solution of the Falkner-Skan equation by recursive Taylor coefficients, Journal of Computational and Applied Mathematics, 176 (2005) 203-214. crossref(new window)

19.
H. Schlichting, K. Gersten, Boundary Layer Theory, eighth rev.ed., McGraw-Hill, New York, 1999.

20.
B. A. Finlayson, Nonlinear Analysis in Chemical Engineering, McGraw Hill, New York, 1980