JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RESEARCH PAPERS : SOIL MICROCOSM STUDIES FOR AEROBIC COMETABOLISM OF 1,1,1,-TRICHLOROETHANE , 1,1,-DICHLORETHYLENE , TRICHLOROETHYLENE AND OTHER CHLORINATED ALIPHATIC HYDROCARBONS BY BUTANE - OR PROPANE - UTILIZING MICROORGANISMS )
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 7, Issue 2,  2002, pp.67-73
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2002.7.2.067
 Title & Authors
RESEARCH PAPERS : SOIL MICROCOSM STUDIES FOR AEROBIC COMETABOLISM OF 1,1,1,-TRICHLOROETHANE , 1,1,-DICHLORETHYLENE , TRICHLOROETHYLENE AND OTHER CHLORINATED ALIPHATIC HYDROCARBONS BY BUTANE - OR PROPANE - UTILIZING MICROORGANISMS )
Kim,Yeong; Semprini, Lewis;
  PDF(new window)
 Keywords
aerobic cometabolism;butane-utilizing microorganisms;chlorinated aliphatic hydrocarbons;propane-utilizing microorganisms;soil microcosm;
 Language
English
 Cited by
1.
아연 광석과 프로판산화 미생물을 이용한 이단 고정상 반응기에서의 염소계 지방족 탄화수소 혼합물 분해 특성,손봉한;김남희;홍광표;윤준기;이채영;권수열;김영;

한국물환경학회지, 2007. vol.23. 5, pp.723-730
 References
1.
Chang, H. L. and Alvarez-Cohen, L. M., "Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene or phenol," Biotechnol. Bioeng., 45, 440-449 (1995). crossref(new window)

2.
Oldenhuis, R., Vink, R. L. J. M., Janssen, D. B., and Witholt, B., "Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase," Appl. Environ. Microbiol., 55, 2819-2826 (1989).

3.
Kim, Y., Aerobic cometabolism of chloroform by butane and propane grown microorganisms from the Hanford subsurface, M. S. Thesis, Oregon State University, Corvallis, OR (1996).

4.
Kim, Y., Semprini, L., and Arp, D. J., "Aerobic cometabolism of chloroform and 1,1,1-trichloroethane by butane-grown microorganisms," Bioremediation J., 2, 135-148 (1997). crossref(new window)

5.
Tovanabootr, A. and Semprini, L., "Comparison of TCE transformation abilities of methane- and propane-utilizing microorganisms," Bioremediation J. 2, 105-124 (1998). crossref(new window)

6.
Kim, Y., Arp, D. J., and Semprini, L., "Aerobic cometabolism of chlorinated methanes, ethanes, and ethenes, by a butane-grown mixed culture," J. Environ. Eng., 126, 934-942 (1999).

7.
Alvarez-Cohen, L. M. and McCarty, P. L., "Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells," Appl. Environ. Microbiol., 57, 1031-1037 (1991). crossref(new window)

8.
Hopkins, G. D. and McCarty, P. L., "Field observations of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as primary substrates," Environ. Sci. Technol., 29, 1628-1637 (1995). crossref(new window)

9.
Dolan, M. E. and McCarty, P. L., "Methanotrophic chloroethene transformation capacities and 1,1-dichloroethene transformation product toxicity," Environ. Sci. Technol., 29, 2741-2747 (1995). crossref(new window)

10.
Westrick, J. J., Mello, J. W. and Thomas, R. F., "The ground water supply survey," J. Am. Water Work Assoc., 76, 52-59 (1984).