JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NUMERICAL MODELING OF WIRE ELECTROHYDRODYNAMIC FLOW IN A WIRE-PLATE ESP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 11, Issue 3,  2006, pp.164-171
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2006.11.3.164
 Title & Authors
NUMERICAL MODELING OF WIRE ELECTROHYDRODYNAMIC FLOW IN A WIRE-PLATE ESP
Chun, Young-Nam;
  PDF(new window)
 Abstract
Numerical modeling of the flow velocity fields for the near corona wire electrohydrodynamic (EHD) flow was conducted. The steady, two-dimensional momentum equations have been computed for a wire-plate type electrostatic precipitator (ESP). The equations were solved in the conservative finite-difference form on a fine uniform rectilinear grid of sufficient resolution to accurately capture the momentum boundary layers. The numerical procedure for the differential equations was used by SIMPLEST algorithm. The Phoenics (Version 3.5.1) CFD code, coupled with Poisson`s electric field, ion transport equations and the momentum equation with electric body force were used for the numerical simulation and the Chen-Kim turbulent model numerical results that an EHD secondary flow was clearly visible in the downstream regions of the corona wire despite the low Reynolds number for the electrode ($Re_{cw}
 Keywords
Electrodynamics;Electrostatic Precipitator;EHD turbulent modeling;Von-Karman type vortex;
 Language
English
 Cited by
 References
1.
Yamamoto, T. and Velkoff, H. R., 'Electrohydrodynamics in an electrostatic precipitator,' J. Fluid Mech., 108, 1-12 (1981) crossref(new window)

2.
Liang, W. J. and Lin, T. H., 'The Characteristics of Ionic Wind and Its Effect on Electrostatic Precipitators,' Aerosol Sci. Technol., 20, 330-336 (1994) crossref(new window)

3.
Chang, J. S., Brocilo, D., Urashima, K., Dekowski, J., Podlinski, J., Mizeraczyk, J. and Touchard, G., 'On-Set of EHD Turbulence for Cylinder in Cross Flow Under Corona Discharges,' in Proceedings of the 5th International EHD workshop, 30-31 August, Poitiers, France, pp. 26-31 (2004)

4.
Choi, B. S. and Fletcher, C. A. J., 'Computation of particle transport in an electrostatic precipitator,' Journal of Electrostatics, 40(41), 413-418 (1997) crossref(new window)

5.
Park, S. J., and Kim, S. S., 'Electrohydrodynamic Flow and Particle Transport Mechanism in Electrostatic Precipitators with Cavity Walls,' Aerosol Science and Technology, 33, 205-221 (2000) crossref(new window)

6.
Hans-Joachim Schemid, Steffen Stolz and Hans Buggisch., 'On the Modelling of the Electro-Hydrodynamic Flow Field in Electrostatic Precipitators Flow,' Turbulence and Combustion 68, 63-89 (2002) crossref(new window)

7.
Liang, W. J., and Lin, T. H., 'The Characteristics of Lonic Wind and its Effect on Electrostatic Precipitators,' Aerosal Sci. Tech., 20, 330-344 (1994) crossref(new window)

8.
Podlinski, J., Dekowski, J., Mizeraczyk, J., Brocilo, D and Chang, J. S., 'Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency,' J. Electrostatics, 64, 259-262 (2006) crossref(new window)

9.
Monson, D. J., Seegmiller, H. L., McConnaughey, P. K. and Chen, Y. S., 'Comparison of experimental with calculations using curvature-corrected zero and two-equation turbulence models for a two-dimension U-duct,' AIAA-90-1484, Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA, p. 19 ( 1990)

10.
F. Michel., 'New Features of MIGAL solver,' in Proceedings of the 9th International PHOENICS User Conference, Moscow, Russia, pp. 23-27 (2002)

11.
Riehle, C. and Loffler, F., 'Grade Efficiency and Eddy Diffusivity Models,' J Electrostatics, 34, 401-413 (1995) crossref(new window)

12.
Ohkubo, T., Hamasaki, S., Nomoto, Y., Chang, J. S. and Adachi, T., 'The effect of corona wire heating on the downstream ozone concentration profiles in an air-cleaning wire-duct electrostatic precipitator,' IEEE Trans. Indust. Appl. Soc., 22, 542-549 (1990)

13.
Thompson, J. J., 'Conduction of Electricity through Gases,' The Cambridge University Press., New York, p. 267 (1945)

14.
Launder, B. E. and Spalding, D. B., 'The numerical computation of turbulent flows,' Computer Methods in Applied Mech. and Eng. 3, 269-289 (1974) crossref(new window)

15.
Patel, V. C., Rodi, W. and Scheurer, G., 'Turbulence models for near-wall and low -Reynolds-number flows: A review,' AIAA J., 23(9), 1308-1319 (1985) crossref(new window)

16.
Yap, C., 'Turbulent heat and momentum transfer in recirculating and impinging flows,' PhD Thesis, Faculty of Technology, University of Manchester, (1987)

17.
Yakhot, V. and Orszag, S.A., 'Renormalization group analysis of turbulence,' J. Sci. Comput, 1, 3 (1986) crossref(new window)

18.
IEEE-DEIS-EHD Technical Committee, 'Recommended International Standard For Dimensionless Parameters Used In Electrohydrodynamics,' IEEE Transactions on Dielectrics and Electrical Insulation, 10( 1), 3-6, (2003)

19.
Mizeraczyk, J., Kocik, M., Dekowski, J., Dors, M., Podlinski, J., Ohkubo, T., Kanazawa, S. and Kawasaki, T., 'Measurements of the velocity field of the flue gas flow in an electrostatic precipitator model using PIV method,' Journal of Electrostatics, 51 (52), 272-277 (2001) crossref(new window)