JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE MEMBRANE BIOFILM REACTOR IS A VERSA TILE PLATFORM FOR WATER AND WASTEWATER TREATMENT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 12, Issue 4,  2007, pp.157-175
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2007.12.4.157
 Title & Authors
THE MEMBRANE BIOFILM REACTOR IS A VERSA TILE PLATFORM FOR WATER AND WASTEWATER TREATMENT
Rittmann, Bruce E.;
  PDF(new window)
 Abstract
The membrane biofilm reactor (MBfR) creates a natural partnership of a membrane and biofilm, because a gas-transfer membrane delivers a gaseous substrate to the biofilm that grows on the membrane`s outer wall. -based MBfRs (called membrane aerated biofilm reactors, or MABRs) have existed for much longer than -based MBfRs, but the -based MBfR is a versatile platform for reducing oxidized contaminants in many water-treatment settings: drinking water, ground water, wastewater, and agricultural drainage. Extensive bench-scale experimentation has proven that the -based MBfR can reduce many oxidized contaminant to harmless or easily removed forms: e.g., to , to and , to , and trichloroethene (TCE) to ethene and . The MBfR has been tested at the pilot scale for and and is now entering field-testing for many of the oxidized contaminants alone or in mixtures. For the MBfR to attain its full promise, several issues must be addressed by bench and field research: understanding interactions with mixtures of oxidized contaminants, treating waters with a high TDS concentration, developing modules that can be used in situ to augment pre-denitrification of wastewater, and keeping the capital costs low.
 Keywords
Biofilm;Bio-reduction;Hydrogen;Membrane;Oxidized contamiants;
 Language
English
 Cited by
1.
Pyrosequencing Analysis Yields Comprehensive Assessment of Microbial Communities in Pilot-Scale Two-Stage Membrane Biofilm Reactors, Environmental Science & Technology, 2014, 48, 13, 7511  crossref(new windwow)
2.
Biodegradation of Acid Orange 7 and its auto-oxidative decolorization product in membrane-aerated biofilm reactor, International Biodeterioration & Biodegradation, 2012, 67, 73  crossref(new windwow)
3.
Using a Two-Stage Hydrogen-Based Membrane Biofilm Reactor (MBfR) to Achieve Complete Perchlorate Reduction in the Presence of Nitrate and Sulfate, Environmental Science & Technology, 2013, 130118101932005  crossref(new windwow)
4.
A Steady-State Biofilm Model for Simultaneous Reduction of Nitrate and Perchlorate, Part 1: Model Development and Numerical Solution, Environmental Science & Technology, 2012, 46, 3, 1598  crossref(new windwow)
5.
Nitrate in Potable Water Supplies: Alternative Management Strategies, Critical Reviews in Environmental Science and Technology, 2014, 44, 20, 2203  crossref(new windwow)
6.
Validation of the ion-exchange membrane bioreactor concept in a plate-and-frame module configuration, Process Biochemistry, 2012, 47, 12, 1832  crossref(new windwow)
7.
Decompostion of pharmaceuticals (sulfamethazine and sulfathiazole) using oxygen-based membrane biofilm reactor, Desalination, 2010, 250, 2, 751  crossref(new windwow)
8.
Crystal ball - 2011, Microbial Biotechnology, 2011, 4, 2, 109  crossref(new windwow)
9.
Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine, Applied Microbiology and Biotechnology, 2009, 81, 6, 1169  crossref(new windwow)
10.
Environmental Biotechnology in Water and Wastewater Treatment, Journal of Environmental Engineering, 2010, 136, 4, 348  crossref(new windwow)
11.
Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors, Water Research, 2014, 54, 115  crossref(new windwow)
12.
Biological hydrogen production: prospects and challenges, Trends in Biotechnology, 2010, 28, 5, 262  crossref(new windwow)
13.
In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor, Applied Microbiology and Biotechnology, 2013, 97, 23, 10233  crossref(new windwow)
14.
Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration, Water Research, 2014, 55, 215  crossref(new windwow)
15.
Model-based evaluation on simultaneous nitrate and arsenite removal in a membrane biofilm reactor, Chemical Engineering Science, 2016, 152, 488  crossref(new windwow)
16.
Sulfide removal and sulfur production in a membrane aerated biofilm reactor: Model evaluation, Chemical Engineering Journal, 2017, 309, 454  crossref(new windwow)
17.
Effect of particle size distribution in wastewater on the performance of nutrient removal process, Desalination and Water Treatment, 2012, 46, 1-3, 227  crossref(new windwow)
18.
Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor, Water Research, 2013, 47, 16, 6122  crossref(new windwow)
19.
Nitrate Shaped the Selenate-Reducing Microbial Community in a Hydrogen-Based Biofilm Reactor, Environmental Science & Technology, 2014, 48, 6, 3395  crossref(new windwow)
20.
Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor, Biotechnology and Bioengineering, 2012, 109, 9, 2200  crossref(new windwow)
21.
A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors, Biotechnology and Bioengineering, 2013, 110, 3, 763  crossref(new windwow)
22.
Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source, Environmental Science & Technology, 2015, 49, 4, 2341  crossref(new windwow)
23.
Hydrogen-Based Nitrate and Selenate Bioreductions in Flue-Gas Desulfurization Brine, Journal of Environmental Engineering, 2011, 137, 1, 63  crossref(new windwow)
24.
Hybrid modeling of counterion mass transfer in a membrane-supported biofilm reactor, Biochemical Engineering Journal, 2012, 62, 22  crossref(new windwow)
25.
Performance of a Sulfide-Oxidizing, Sulfur-Producing Membrane Biofilm Reactor Treating Sulfide-Containing Bioreactor Effluent, Environmental Science & Technology, 2011, 45, 9, 4080  crossref(new windwow)
26.
Bioreduction of nitrate in a hydrogen-based membrane biofilm reactor using CO2 for pH control and as carbon source, Chemical Engineering Journal, 2015, 276, 59  crossref(new windwow)
27.
Effects of Multiple Electron Acceptors on Microbial Interactions in a Hydrogen-Based Biofilm, Environmental Science & Technology, 2013, 47, 13, 7396  crossref(new windwow)
28.
The study of electron equivalent fluxes about decomposition of sulfamethazine and sulfathiazole using oxygen-based membrane biofilm reactor, Desalination and Water Treatment, 2013, 51, 22-24, 4263  crossref(new windwow)
 References
1.
Rittmann, B. E., 'The membrane biofilm reactor: the natural partnership of membranes and biofilm,' Water Sci. Technol., 53(3), 219-226 (2006)

2.
Lee, K.-C. and Rittmann, B. E., 'Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water,' Water Res., 36, 2040-2052 (2002) crossref(new window)

3.
Nerenberg, R., Rittmann, B. E., and Najrn, I., 'Perchlorate reduction in a hydrogen-based membrane-biofilm reactor,' J. Amer. Water Works Assn., 94( 11), 103-114 (2002)

4.
Rittmann, B. E., Nerenberg, R., Lee, K. C., Najrn, I., Gillogly, T. E., Lehman, G. E., and Adham, S. S., 'The hydrogen-based hollow-fiber membrane biofilm reactor (HFMBfR) for reducing oxidized contaminants,' Water Sci, Technol.: Water Supply, 4(1), 127-133 (2004)

5.
Yamagiwa, K., Ohkawa, A., and Hirasa, O., 'Simultaneous organic carbon removal and nitrification by biofilm formed on oxygen enrichment membrane,' J. Chem. Engr. Japan, 27, 638-643 (1994) crossref(new window)

6.
Semmens, M. J., Dahm, D., Shanahan, J., and A. Christianson, A., 'COD and nitrogen removal by biofilm growing on gas permeable membranes,' Water Res., 37, 4343-4350 (2003) crossref(new window)

7.
Cowman, J., Torres, C., and Rittmann, B. E., 'Total nitrogen removal in an aerobic/anoxic membrane biofilm reactor system,' Water Sci. Technol., 52(7), 115-120 (2005)

8.
Clapp, L. W., Regan, J. M., Ali, F., Newman, J. D., Park, J. K., and Noguera, D. R., 'Activity, structure, and stratification of membrane-attached methanotrophic biofilms cometabolically degrading trichloroethylene,' Water Sci. Technol., 39(7), 153-161 (1999)

9.
Aziz, C. E., Fitch, M. W., Linquist, L. K., Pressman, J. G., Georgiou, G., and Speitel, G. E., 'Methanotrophic biodegradation of trichloroethylene in a hollow fiber membrane bioreactor,' Environ. Sci. Technol. 29, 2574-2583 (1995) crossref(new window)

10.
Pressman, J. G., Georgiou, G., and Speitel, G. E., Jr., 'Scale-up considerations for a hollow-tiber-membrane bioreactor treating trichloroethylene-contaminated water,' Water Environ. Res., 77, 533-542 (2005) crossref(new window)

11.
Ohandja, D. G., and Stuckey, D. C., 'Development of a membrane-aerated biofilm reactor to completely mineralise perchloroethylene in wastewaters,' J. Chem. Technol. Biotechnol., 81, 1736-1744 (2006) crossref(new window)

12.
Schaffer, R. B., Ludzack, F. J., and Ettinger, M. B., 'Sewage treatment by oxygenation through permeable plastic films,' J. Water Pollution Control Fedn., 32, 939-941 (1960)

13.
Yeh, S. J., and Jenkins, C. R., 'Pure oxygen fixed film reactor,' J. Environ. Engr., 104, 611-623 (1978)

14.
Timberlake, D., Strand, S. E., and Williamson, K. J., 'Combined aerobic heterotrophic oxidation, nitrification, and denitrification in a permeable supported biofilm,' Water Res., 22, 1513-1517 (1988) crossref(new window)

15.
Suzuki, Y., Miyahara, S., Takeishi, K., Oxygen-supply method using gas-permeable film for waste-water treatment,' Water Sci. Technol., 28(7), 243-250 (1993)

16.
Pankhania, M., Stephenson, T., and Semmems, M. J., 'Hollow fiber bioreactor for wastewater treatment using bubbleless membrane aeration,' Water Res., 28, 2233-2236 (1994) crossref(new window)

17.
Brindle, K., and Stephenson, T., 'The application of membrane biological reactors for the treatment of wastewaters,' Biotechnol. Bioengr., 49, 601-610 (1996) crossref(new window)

18.
Brindle, K., and Stephenson, T., 'Nitrification in a bubbleless oxygen mass transfer membrane bioreactor,' Water Sci. Technol., 39(9), 261-267 (1996)

19.
Brindle, K., Stephenson, T., and Semmens, M. J., 'Nitrification and oxygen utilization in a membrane aeration bioreactor,' J. Membrane Sci., 144, 197-209 (1998) crossref(new window)

20.
Brindle, K., Stephenson, T., and Semmens, M. J., 'Pilot-plant treatment of a high-strength brewery wastewater using a membrane-aeration bioreactor,' Water Environ. Res., 71, 11971204 (1999)

21.
Pankhania, M., Brindle, K., and Stephenson, T., 'Membrane aeration bioreactors for wastewater treatment: completely mixed and plugflow operation,' Chem. Engr. J., 93, 131-136 (1999)

22.
Casey, E., Glennon, B., and Hamer, G., 'Review of membrane aerated biofilm reactors,' Resources Conservation Recycling, 27, 203-215 (1999) crossref(new window)

23.
Suzuki, Y., Hatano, N., Ito, S., and Ikeda, H., 'Performance of nitrogen removal and biofilm structure of porous gas permeable membrane reactor,' Water Sci. Technol., 41, (4-5), 211-217 (2000)

24.
Schramm, A., De Beer, D., Gieseke, A., and Amann, R., 'Microenvironments and distribution of nitrifying bacteria in a membranebound biofilm,' Environ. Microb., 2, 680-686 (2000) crossref(new window)

25.
Ho, C. M., Tseng, S. K., and Chang, Y. J., 'S im ultaneous nitrification and denitrification using an autotrophic membrane immobilized biofilm reactor,' Lett. Appl. Microb., 35, 481-485 (2002) crossref(new window)

26.
Cole, A. C., Shanahan, J. W., Semmens, M. J., and LaPara, T. M., 'Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater,' Desalination, 146, 421-426 (2002) crossref(new window)

27.
Terada, A., Hibiya, K., Nagai, J., Tsuneda, S., and Hirata, A., 'Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment,' J. Biosci. Bioengr., 95, 170-178 (2003) crossref(new window)

28.
Shanahan, J. W., and Semmens, M. J., 'Multipopulation model of membrane-aerated biofilms,' Environ, Sci. Technol., 38, 3176-3183 (2004) crossref(new window)

29.
Cole, A. C., Semmens, M. L., and LaPara, T. M., 'Stratification of activity and bacterial community structure in biofilms grown on mem branes transferring oxygen,' Appl. Environ. Microb., 70, 1982-1989 (2004) crossref(new window)

30.
Shanahan, J. W., and Semmens, M. J., 'Influence of a nitrifying biofilm on local oxygen fluxes across a micro-porous flat sheet membrane,' J. Membrane Sci, 277(1-2), 65-74 (2006) crossref(new window)

31.
Gonzalez-Brambila, M., Monroy, O., and Lopez-Isunza, F., 'Experimental and theoretical study of membrane-aerated biofilm reactor behavior under different modes of oxygen supply for the treatment of synthetic wastewater,' Chem. Engr. Sci., 61, 5268-5281 (2006) crossref(new window)

32.
Downing, L., and Nerenberg, R., 'Performance and microbial ecology of the hybrid membrane biofilm process (HMBP) for concurrent nitrification and denitrification of wastewater,' Water Sci. Technol., 55(8-9), 355-362 (2007) crossref(new window)

33.
Rittmann, B. E., 'The new frontier of oxidized contaminants,' Proc. 4th Int!. Con! Remediation of Chlorinated and Recalictrant Compounds, Battelle Press, Columbus, Ohio, CD-ROM (2004)

34.
Nerenberg, R., and Rittmann, B. E., 'Reduction of oxidized water contaminants with a hydrogen-based, hollow-fiber membrane biofilm reactor,' Water Sci. Technol., 49(1112), 223-230 (2004)

35.
Rittmann, B. E., and McCarty, P. L., Environmental Biotechnology: Principles and Applications, McGraw-Hill Book Co., New York (2001)

36.
National Research Council, Natural A ttenuation for Ground Water Remediation, National Academy Press, Washington, D.C. (2000)

37.
Lee, K. C., and Rittmann, B. E., 'A novel hollow-fiber membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water,' Water Sci. Technol., 41(4-5), 219-226 (2000)

38.
Ergas, S. J., and Reuss, A. F., 'Hydrogenotrophoc denitrification of drinking water using a hollow fibre membrane bioreactor,' J. Water Supply, 50, 161-171 (2001)

39.
Rittmann, B. E., and K.-C. Lee, K.-C., Hollow-Fiber Membrane Biofilm 'Reactor for Autohydrogenotrophic Treatment of Water, USA patent 6,387,262 (May 14, 2002)

40.
Rittmann, B. E., and Nerenberg, R., Perchlorate Reduction and Related Water Treatment Methods; U.S. patent no. 7,186,340 (March 6, 2007)

41.
Ho, C. M., Tseng, S. K., and Chang, Y. J., 'Autotrophic denitrification via a novel mem brane-attached biofi lm reactor,' Lett. Appl. Microb., 33, 201-205 (2001) crossref(new window)

42.
Kauser, J., A Novel Membrane Process for Autotrophic Denitrification, Water Environment Research Foundation, Arlington, Virginia, USA (2003)

43.
Terada, A., Kaku, S., Matsumoto, S, and Tsuneda, S., 'Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gas-permeable membrane,' Biochem. Engr, J., 31, 84-91 (2006) crossref(new window)

44.
Masters, G. M., Introduction to Environmental Engineering and Science, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey (1998)

45.
Nerenberg, R., Kawagoshi, Y., and Rittmann, B. E., 'Kinetics of an autotrophic, hydrogenoxidizing perchlorate-reducing bacterium,' Water Res., 40, 3290-3296 (2007) crossref(new window)

46.
Nerenberg, R., Kawagoshi, Y., and Rittmann, B. E., 'Microbial ecology of a hydrogen-based membrane biofilm reactor reducing perchlorate in the presence of nitrate or oxygen,' Water Res., in press (2007)

47.
Nerenberg, R., and Rittmann, B. E., 'Perchlorate as a secondary substrate in a denitrifying hollow-fiber membrane biofilm reactor,' Water Sci. Technol.: Water Supply, 2(2), 259-265 (2002)

48.
Adham, S., Gillogly, T., Lehman, G., Rittmann, B. E., and Nerenberg, R., Membrane Biofilm Reactor Process for Nitrate and Perchlorate Removal, American Water Works Association Research Foundation, Denver, Colorado (2005)

49.
Chung, J., Rittmann, B. E., Wright, W. F., and Bowman, R. H., 'Simultaneous bioreduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor,' Biodegradation, 18, 199-209 (2007) crossref(new window)

50.
Lee, K.-C., and Rittmann, B. E., 'Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor,' Water Res., 37, 1551-1556 (2003) crossref(new window)

51.
Chung, J., Nerenberg, R., and Rittmann, B. E., 'Bio-reduction of selenate a hydrogenbased membrane biofilm reactor,' Environ. Sci. Technol., 40, 1664-1671 (2006) crossref(new window)

52.
Chung, J., Nerenberg, R., Torres, C., and Rittmann, B. E., 'Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor,' Water Res., 40, 1634-1642 (2006) crossref(new window)

53.
Chung, J., Li, X., and Rittmann, B. E., 'Bio-reduction of arsenate using a hydrogenbased membrane biofilm reactor,' Chemosphere, 40, 24-34 (2006)

54.
Chung, J., Ryu, H., Abbaszadegan, M., and Rittmann, B. E., 'Community structure and function in an Hs-based membrane biofilm reactor capable of bio-reduction of selenate and chromate,' Appl. Microb. Biotechnol., 72, 1330-1339 (2006) crossref(new window)

55.
Krajmalnik-Brown, R., Holscher, T., Thomson, I. N., Saunders, F. M., Ritalahti, K. M., and Loffler, F. E., 'Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1,' Appl. Environ. Microb., 70, 6347-6351 (2004) crossref(new window)

56.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M., and Loffler, R. E., 'Isolation and characterization of Dehalococcoides sp. Strain FL2, a trichlroroethene (TCE) and 1,2-dichloroethene-respiring anaerobe,' Environ. Microb., 7, 1442-1450 (2005) crossref(new window)

57.
Chung, J., Krajmalnik-Brown, R., and Rittmann, B. E., 'Bio-reduction of trichloroethene using a hydrogen-based Membrane biofilm reactor,' Environ. Sci. Technol., submitted

58.
Chung, J. and Rittmann, B. E., 'Bio-reductive dechlorination of 1,1,1-trichloroethane and chloroform using a hydrogen-based membrane biofilm reactor,' Biotechnol. Bioengr., 97, 52-60 (2007) crossref(new window)

59.
Chung, J., and Rittmann, B. E., 'Simultaneous bio-reduction of trichloroethene, trichloroethane, and chloroform using a hydrogenbased membrane biofilm reactor,' Wat. Sci. Technol., submitted

60.
Chang, C. C., Tseng, S. K., Chang, C. C., and Ho, C. M., 'Reductive dechlorination of 2-chlorophenol in a hydrogenotrophic, gaspermeable, silicone membrane bioreactor,' Bioresource Technol., 90, 323-328 (2003) crossref(new window)

61.
Downing, L., and Nerenberg, R., Kinetics of microbial bromate reduction in a hydrogenoxidizing, denitrifying biofilm reactor,' Biotechnol. Bioengr., 38, 499-506 (2007) crossref(new window)

62.
Chung, J., Ahn, C.-H., Chen, Z., and Rittmann, B. E., 'Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogengased membrane biofilm reactor,' Chemosphere, in press (2007)

63.
Chung, J., Nerenberg, R., and Rittmann, B. E., 'Simultaneous biological reduction of nitrate and perchlorate in brine water using the hydrogen-based membrane biofilm reactor,' J. Environ. Engr., 133, 157-164 (2007) crossref(new window)

64.
Rittmann, B. E., Nerenberg, R., Stinson, B., Katehis., D., Leong, E., and Anderson, H., 'Hydrogen-based membrane biofilm reactor for wastewater treatment,' Water Intelligence Online, No. 200504029, (2005)

65.
Daigger, G. T' Rittmann, B. E., Adham, S. S., and Andreottola, G., 'Are membrane bioreactors ready for widespread application?' Environ. Sci. Technol., 39, 399A-406A (2005) crossref(new window)

66.
DeCarolis, J., Adham, S. S., and Hirani, Z., Evaluation of Newly Developed Membrane B ioreacator Systems for Water Reclamation-Phase 4. Final Report, Project No., 01- FC81-1157, United States Department of Interior, Bureau of Reclamation, Washington, DC (2007)

67.
Shin, J.-H., Sang, B.-I., Chung, Y.-C., and Choung, Y.-K., 'Feasibility study on the removal of nitrous compounds with a hollow-fiber membrane biofilm reactor', Water, Sci. Technol., 51 (6-7), 365-371 (2005)

68.
Shin, J.-H., Sang, B.-I., Chung, Y.-C., and Choung, Y.-K., 'The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor,' Desalination, 183, 447-545 (2005) crossref(new window)

69.
Shin, J .-H., Sang' B.-I., Chung, Y.-C., and Choung Y.-K., 'A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutive nitrification and denitrification,' Desalination, in press (2007)

70.
Onishi, H., Mumazawa, R., and Takeda, H., Process and Apparatus for Water Treatment, U. S. Patent 4,181,604 (1980)

71.
Onishi, H., and Numazawa, R., Biochemical Process for Purifying Contaminated Water, U. S. Patent 4,746,435 (1998)

72.
Hibiya, K., Terada, A., Tsuneda, S., and Hirata, A., 'Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane aerated biofilm reactor,' J. Biotechnol., 100 (1): 23-32 (2003) crossref(new window)

73.
Semmens, M. J., Dahm, K., Shanahan, J., and Christianson, A., 'COD and nitrogen removal by biofilms growing on gas permeable membranes,' Water Res., 37, 4343-4350 (2003) crossref(new window)

74.
Satoh, H., Ono, H., Rulin, B, Kamo, J., Okabe, S., and Fukushi, K.-I., 'Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors,' Water Res., 38, 1633-1641 (2004) crossref(new window)

75.
Jacome, A., Molina, J., Suarez, J., and Tejero, I., 'Simultaneous removal of organic matter and nitrogen compounds in autoaerated biofilms,' J. Environ. Engr., 132, 1255-1263 (2006) crossref(new window)

76.
LaPara, T. M., Cole, A. C., Shanahan, J. W., and Semmens, M. J., 'The effects of organic carbon, ammonical-nitrogen, and oxygen partial pressure of the stratification of membrane-aerated biofilms,' J. Indust. Microb. Biotech., 33, 315-323 (2006) crossref(new window)