Advanced SearchSearch Tips
Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 12, Issue 5,  2007, pp.211-217
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2007.12.5.211
 Title & Authors
Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)
Kim, Do-Hyong; Kim, Jeong-Kwon; Jang, Seong-Ho; Mulholland, James A.; Ryu, Jae-Yong;
  PDF(new window)
Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to . Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD -bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond -scission, or C-C bond -scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond -scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond -scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond -scission leading to naphthalene is predominant at high temperatures.
PAH (Polycyclic aromatic hydrocarbon);CPD (Cyclopentadiene);Thermal formation;
 Cited by
Homologue Patterns of Polychlorinated Naphthalenes (PCNs) formed via Chlorination in Thermal Process,Ryu, Jae-Yong;Kim, Do-Hyong;Mulholland, James A.;Jang, Seong-Ho;Choi, Chang-Yong;Kim, Jong-Bum;

Journal of Environmental Science International, 2012. vol.21. 8, pp.891-899 crossref(new window)
Effect of ethanol addition on soot precursors emissions during benzene oxidation in a jet-stirred reactor, Environmental Science and Pollution Research, 2014, 21, 10, 6671  crossref(new windwow)
Polycyclic Aromatic Hydrocarbons: Temperature Driven Formation and Behavior during Coal Combustion in a Coal-Fired Power Plant, Energy & Fuels, 2013, 27, 10, 6273  crossref(new windwow)
Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study, Phys. Chem. Chem. Phys., 2016, 18, 11, 8120  crossref(new windwow)
Homologue Patterns of Polychlorinated Naphthalenes (PCNs) formed via Chlorination in Thermal Process, Journal of Environmental Science International, 2012, 21, 8, 891  crossref(new windwow)
Homann, K. H., and Wagner, H. G. 'Some new aspects of the mechanism of carbon formation in premixed flames,' Proc. Combust. Inst., 11, 371-376 (1967)

Crittenden, B. D., and Long, R., 'Formation of polycyclic aromatics in rich premixed acetylene and ethylene flames,' Combust. Flame., 20, 359-368 (1973) crossref(new window)

Bockhorn, H., Fetting, F., and Wenz, H. W., 'Investigation of the formation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames,' Ber Bunsenges Phys. Chem., 87, 1067-1073 (1983) crossref(new window)

Frenklach, M., Clary, D. W., Cardiner, W. C., and Stein, S. E., 'Detailed kinetic modeling of soot formation in shocktube pyrolysis of acetylene.' Proc. Combust. Inst., 20, 887-901 (1984)

Cole, J. A., Bittner, J. D., Longwell, J. P., and Howard, J. B., 'Formation mechanisms of aromatic compounds in aliphatic flames,' Combust. Flame., 56, 51-70 (1984) crossref(new window)

Westmoreland, P. R., Dean, A. M., Howard, J. B., and Longwell, J. P., 'Forming Benzene in flames by Chemically Activated Isomerizations,' J. Phys. Chem., 93, 8171-8180 (1989) crossref(new window)

Marinov, N. M., Pitz, W. J., Westbrook, C. K., and Castaldi, M. J., Senken, S. M., 'Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames,' Combust Sci. Technol., 116, 117-211 (1996)

Miller, J. A., and Melius, C. F., 'Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels,' Combust. Flame, 91, 21-39 (1992) crossref(new window)

D'Anna, A., Violi, A., D'Alessio, A. 'Modeling the rich combustion of aliphatic hydrocarbons,' Combust. Flame, 121, 418-429 (2000) crossref(new window)

Violi, A., Sarofim, A. F., and Truong, T. N. 'Quantum mechanical study of molecular weight growth process by combination of aromatic molecules,' Combust. Flame, 126, 1506-1515, (2001) crossref(new window)

Violi, A., D'Anna, A., D'Alessio, A., and Sarofim, A. F., 'Modeling aerosol formation in opposed-flow diffusion flames,' Chemosphere, 51 (10), 1047-1054 (2003) crossref(new window)

Violi, A., D'Anna, A., and D'Alessio, A., 'Modeling of particulate formation in combustion and pyrolysis,' Chem. Eng. Sci., 54, 3433-3442 (1999) crossref(new window)

D'Anna, A., and Violi, A., 'A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames,' Proc. Combust. Inst., 27, 425-433 (1998)

Violi, A., Sarofim, A. F., and Truong, T. N. 'Quantum mechanical study of molecular weight growth process by combination of aromatic molecules,' Combust. Flame, 126 (1-2), 1506-1515 (2001) crossref(new window)

Lamprecht, A., Atakan, B., and Kohse-Höinghaus, K., 'Fuelrich flame chemistry in low-pressure cyclopentadiene flames,' Proc. Combust. Inst., 28, 1817-1824, (2000)

Gomez, A., Sidebotham, G., and Glassman, I., 'Sooting behavior in temperature controlled laminar diffusion flames,' Combust. Flame, 58, 5845-5857 (1984)

Spielmann, R., and Cramers, C. A., 'Cyclopentadienic compounds as intermediates in the thermal degradation of phenols: Kinetics of thermal decomposition of cyclopentadiene,' Chromatographia, 5, 295-300 (1972) crossref(new window)

Manion, J., and Louw, R., 'Rates, products, and mechanisms in the gas-phase hydrogenolysis of phenol between 922 and 1175 K,' J. Phys. Chem., 93, 3563-3574 (1989) crossref(new window)

Friderichsen, A. V., Shin, E.-J., Evans, R. J., Nimlos, M. R., Dayton, D. C., and Ellison, G. B., 'The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle,' Fuel, 80, 1747-1755 (2001) crossref(new window)

Dean, A. M., 'Predictions of pressure and temperature effects upon radical addition and recombination reactions,' J. Phys. Chem., 89, 4600-4608 (1985) crossref(new window)

Melius, C. F., Colvin, M. E., Marinov, N. M., Pitz, W. J., and Senkan, S. M., 'Reaction mechanisms in aromatic hydrocarbon formation involving the $C_5H_5$ cyclopenta dienyl moiety,' Proc. Combust. Inst., 26, 685-692 (1996)

Richter, H., Benish, T. G., Mazyar, O. A., Green, W. H., and Howard, J. B., 'Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame,' Proc. Combust. Inst., 28, 2609-2618 (2000)

Mulholland, J. A., Lu, M., and Kim, D. H., 'Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties,' Proc. Combust. Inst., 28, 2593-2599 (2000)

Lu, M., and Mulholland, J. A., 'Aromatic hydrocarbon growth from indene,' Chemosphere, 42, 625-633 (2001) crossref(new window)

Lu, M., Mulholland, J. A., 'PAH growth from the pyrolysis of CPD, indene and naphthalene mixture,' Chemosphere, 55, 605-610 (2004) crossref(new window)

Burcat, A., and Dvinyaninov, M., 'Detailed kinetics of cyclopentadiene decomposition studied in a shock tube,' Int. J. Chem. Kinetics, 29(7), 505-514 (1997) crossref(new window)

Stewart, J. J. P., 'MOPAC: A semiempirical molecular orbital program,' J. Com. Mol. Design, 4, 1-105 (1990) crossref(new window)

Beach, D. B., 'Design of low-temperature thermal chemical vapor deposition processes,' IBM J. Res. Develop., 34 (6), 795-805 (1990) crossref(new window)

Madden, L. K., Mebel, A. M., Lin, M. C., and Melius, C. F., 'Theoretical study of the thermal isomerization of fulvene to benzene,' J. Phys. Org. Chem., 9 (12), 801-810 (1996) crossref(new window)

Dubnikova, F., and Lifshitz, A., 'Ring expansion in methylcyclopentadiene radicals: Quantum chemical kinetic calculations,' J. Phys. Chem., A 106, 8173-8183 (2002) crossref(new window)