JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 13, Issue 2,  2008, pp.51-65
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2008.13.2.051
 Title & Authors
Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation
Kim, In-S.; Chae, Kyu-Jung; Choi, Mi-Jin; Verstraete, Willy;
  PDF(new window)
 Abstract
The increasing demand for energy in the near future has created strong motivation for environmentally clean alternative energy resources. Microbial fuel cells (MFCs) have opened up new ways of utilizing renewable energy sources. MFCs are devices that convert the chemical energy in the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions, and the reduction of a terminal electron acceptor, most preferentially oxygen, at the cathode. Due to the rapid advances in MFC-based technology over the last decade, the currently achievable MFC power production has increased by several orders of magnitude, and niche applications have been extended into a variety of areas. Newly emerging concepts with alternative materials for electrodes and catalysts as well as innovative designs have made MFCs promising technologies. Aerobic bacteria can also be used as cathode catalysts. This is an encouraging finding because not only biofouling on the cathode is unavoidable in the prolonged-run MFCs but also noble catalysts can be substituted with aerobic bacteria. This article discusses some of the recent advances in MFCs with an emphasis on the performance, materials, microbial community structures and applications beyond electricity generation.
 Keywords
Bacterial community;Energy;Electricity;Electrochemically active bacteria;Microbial fuel cells;
 Language
English
 Cited by
1.
산림 토착 미생물 군집에 미치는 유류 첨가제 노출 농도 및 시간의 영향,조원실;조경숙;

한국환경보건학회지, 2008. vol.34. 5, pp.387-394 crossref(new window)
2.
실용적 적용을 위한 미생물연료전지의 운전 조건과 설계 인자,김창원;차재환;최수정;유하나;

대한환경공학회지, 2009. vol.31. 9, pp.719-732
3.
Network numerical simulation of two-dimensional nonlinear micropolar hydrodynamics in a Darcian porous medium,;;;

The Korean Journal of Chemical Engineering, 2009. vol.26. 5, pp.1226-1234 crossref(new window)
4.
연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성,김정구;정연구;박송인;

유기물자원화, 2010. vol.18. 1, pp.57-65
5.
Metabolic Roles of Carotenoid Produced by Non-Photosynthetic Bacterium Gordonia alkanivorans SKF120101,;;;;

Journal of Microbiology and Biotechnology, 2012. vol.22. 11, pp.1471-1477 crossref(new window)
6.
가축분뇨를 이용한 미생물연료전지내 미생물군집의 탄소 기질 이용도에 관한 연구,장재경;홍선화;이미향;유영선;장인섭;김종구;강연구;이은영;

한국폐기물자원순환학회지, 2012. vol.29. 8, pp.712-719 crossref(new window)
7.
Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell,;;;;;

Environmental Engineering Research, 2013. vol.18. 4, pp.277-281 crossref(new window)
8.
가축분뇨를 이용한 미생물연료전지의 농화배양 단계에서 미생물 군집 변화,장재경;홍선화;유영선;이은영;장인섭;강연구;김종구;

대한환경공학회지, 2013. vol.35. 12, pp.973-977 crossref(new window)
1.
Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells, Electrochemistry Communications, 2012, 14, 1, 71  crossref(new windwow)
2.
Treatment of Alcohol Distillery Wastewater Using a Bacteroidetes-Dominant Thermophilic Microbial Fuel Cell, Environmental Science & Technology, 2012, 46, 5, 3022  crossref(new windwow)
3.
Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes, Bioresource Technology, 2011, 102, 5, 4144  crossref(new windwow)
4.
Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters, RSC Adv., 2012, 2, 4, 1248  crossref(new windwow)
5.
Using electrical signals of microbial fuel cells to detect copper stress on soil microorganisms, European Journal of Soil Science, 2015, 66, 2, 369  crossref(new windwow)
6.
Microwave-Assisted Synthesis of Reduced Graphene Oxide/SnO2Nanocomposite for Oxygen Reduction Reaction in Microbial Fuel Cells, ACS Applied Materials & Interfaces, 2016, 8, 7, 4633  crossref(new windwow)
7.
Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance, Bioresource Technology, 2011, 102, 1, 298  crossref(new windwow)
8.
Bifunctional Silver Nanoparticle Cathode in Microbial Fuel Cells for Microbial Growth Inhibition with Comparable Oxygen Reduction Reaction Activity, Environmental Science & Technology, 2011, 45, 12, 5441  crossref(new windwow)
9.
Biocatalysts in microbial electrolysis cells: A review, International Journal of Hydrogen Energy, 2016, 41, 3, 1477  crossref(new windwow)
10.
Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells, Physical Chemistry Chemical Physics, 2012, 14, 38, 13332  crossref(new windwow)
11.
Microbial Communities of the Microbial Fuel Cell Using Swine Wastewater in the Enrichment Step with the Lapse of Time, Journal of Korean Society of Environmental Engineers, 2013, 35, 12, 973  crossref(new windwow)
12.
Electricity generation and microbial community in microbial fuel cell using low-pH distillery wastewater at different external resistances, Journal of Biotechnology, 2014, 186, 175  crossref(new windwow)
13.
A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell, Materials Chemistry and Physics, 2016, 182, 86  crossref(new windwow)
14.
Effect of zeolite-coated anode on the performance of microbial fuel cells, Journal of Chemical Technology & Biotechnology, 2015, 90, 1, 87  crossref(new windwow)
15.
Harvesting energy of interaction between bacteria and bacteriophage in a membrane-less fuel cell, Bioresource Technology, 2013, 147, 654  crossref(new windwow)
16.
Relative effect of bioaugmentation with electrochemically active and non-active bacteria on bioelectrogenesis in microbial fuel cell, Bioresource Technology, 2013, 146, 696  crossref(new windwow)
17.
Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes, Trends in Biotechnology, 2012, 30, 4, 225  crossref(new windwow)
18.
Long term testing of Microbial Fuel Cells: Comparison of different anode materials, Bioresource Technology, 2016, 219, 37  crossref(new windwow)
19.
A terracotta bio-battery, Bioresource Technology, 2012, 116, 86  crossref(new windwow)
20.
Microbial fuel cells – Applications for generation of electrical power and beyond, Critical Reviews in Microbiology, 2014, 1  crossref(new windwow)
21.
Enhancing power generation of scale-up microbial fuel cells by optimizing the leading-out terminal of anode, Journal of Power Sources, 2014, 248, 931  crossref(new windwow)
22.
Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen, The ISME Journal, 2013, 7, 8, 1472  crossref(new windwow)
23.
Characterization and performance study of phase inversed Sulfonated Poly Ether Ether Ketone – Silico tungstic composite membrane as an electrolyte for microbial fuel cell applications, Renewable Energy, 2017, 102, 77  crossref(new windwow)
24.
Influence of pressurized anode chamber on ion transports and power generation of UF membrane microbial fuel cells (UF-MFCs), Journal of Power Sources, 2015, 279, 731  crossref(new windwow)
25.
Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial desalination cells, Environmental Technology, 2015, 36, 7, 852  crossref(new windwow)
26.
Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells, Chemical Engineering Journal, 2014, 254, 393  crossref(new windwow)
27.
Bioelectricity production using a new electrode in a microbial fuel cell, Bioprocess and Biosystems Engineering, 2012, 35, 7, 1219  crossref(new windwow)
28.
Assessment of different ceramic filtration membranes as a separator in microbial fuel cells, Desalination and Water Treatment, 2016, 57, 58, 28077  crossref(new windwow)
29.
Characterization and performance study of sulfonated poly ether ether ketone/Fe3O4 nano composite membrane as electrolyte for microbial fuel cell, Chemical Engineering Journal, 2014, 243, 564  crossref(new windwow)
30.
Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell, Environmental Engineering Research, 2013, 18, 4, 277  crossref(new windwow)
31.
Overview on the developments of microbial fuel cells, Biochemical Engineering Journal, 2013, 73, 53  crossref(new windwow)
32.
Effects of pH variations on anodic marine consortia in a dual chamber microbial fuel cell, International Journal of Hydrogen Energy, 2016  crossref(new windwow)
33.
Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers, Renewable Energy, 2017, 101, 1256  crossref(new windwow)
34.
Swine wastewater treatment using a unique sequence of ion exchange membranes and bioelectrochemical system, Bioresource Technology, 2012, 118, 163  crossref(new windwow)
35.
Development of cation exchange resin-polymer electrolyte membranes for microbial fuel cell application, Journal of Materials Science, 2015, 50, 19, 6302  crossref(new windwow)
36.
Direct electron transfer in E. coli catalyzed MFC with a magnetite/MWCNT modified anode, RSC Advances, 2013, 3, 37, 16665  crossref(new windwow)
37.
Plant and microorganisms support media for electricity generation in biological fuel cells with living hydrophytes, Bioelectrochemistry, 2016, 112, 145  crossref(new windwow)
38.
Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm, Journal of Environmental Management, 2016, 180, 351  crossref(new windwow)
39.
Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery, Applied Energy, 2016, 168, 706  crossref(new windwow)
40.
Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing, Applied Microbiology and Biotechnology, 2010, 87, 6, 2335  crossref(new windwow)
41.
Layer-by-layer assembled gold nanoparticles modified anode and its application in microbial fuel cells, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 105  crossref(new windwow)
42.
Recent Advances in Microbial Fuel Cells Integrated with Sludge Treatment, Chemical Engineering & Technology, 2012, 35, 10, 1733  crossref(new windwow)
43.
Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction, Catalysis Today, 2013, 202, 55  crossref(new windwow)
44.
Effect of Exposure Concentration and Time of Fuel Additives on the Indigenous Microbial Community in Forests, Korean Journal of Environmental Health Sciences, 2008, 34, 5, 387  crossref(new windwow)
45.
Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter, Bioresource Technology, 2013, 128, 14  crossref(new windwow)
46.
Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems, Applied Microbiology and Biotechnology, 2013, 97, 1, 429  crossref(new windwow)
47.
Effect of cation transport of SPEEK – Rutile TiO2 electrolyte on microbial fuel cell performance, Journal of Membrane Science, 2015, 492, 518  crossref(new windwow)
48.
In Situ Bioremediation Using Sediment Microbial Fuel Cell, Journal of Hazardous, Toxic, and Radioactive Waste, 2016, 04016022  crossref(new windwow)
49.
A numerical solution of unsteady MHD convection heat and mass transfer past a semi-infinite vertical porous moving plate using element free Galerkin method, Computational Materials Science, 2010, 48, 3, 537  crossref(new windwow)
50.
Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell, Journal of Environmental Management, 2010, 91, 12, 2478  crossref(new windwow)
 References
1.
Logan, B. E., and Regan, J. M., "Electricity-producing bacterial communities in microbial fuel cells," Trends Microbiol., 14(12), 512-518 (2006) crossref(new window)

2.
Schroder, U., "Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency," Phys. Chem. Chem. Phys., 9(21), 2619-2629 (2007) crossref(new window)

3.
Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., and Kim, B. H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell," Process Biochem., 39(8), 1007-1012 (2004) crossref(new window)

4.
You, S. J., Zhao, Q. L., Zhang, J. N., Jiang, J. Q., and Zhao, S. Q., "A microbial fuel cell using permanganate as the cathodic electron acceptor," J. Power Sources, 162(2), 1409-1415 (2006)

5.
Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., and Kim, H. J., "Operational parameters affecting the performance of a mediator-less microbial fuel cell," Biosens. Bioelectron., 18(4), 327-334 (2003) crossref(new window)

6.
Logan, B. E., Hamelers, B., Rozendal, R., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K., "Microbial fuel cells: Methodology and technology," Environ. Sci. Technol., 40(17), 5181-5192 (2006) crossref(new window)

7.
Liu, H., Cheng, S., and Logan, B. E., "Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell," Environ. Sci. Technol., 39(2), 658-662 (2005) crossref(new window)

8.
Liu, H., and Logan, B. E., "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environ. Sci. Technol., 38(14), 4040-4046 (2004) crossref(new window)

9.
Oh, S., Min, B., and Logan, B. E., "Cathode performance as a factor in electricity generation in microbial fuel cells," Environ. Sci. Technol., 38(18), 4900-4904 (2004) crossref(new window)

10.
Kim, G. T., Webster, G., Wimpenny, J. W. T., Kim, B. H., Kim, H. J., and Weightman, A. J., "Bacterial community structure, compartmentalization and activity in a microbial fuel cell," J. Appl. Microbiol., 101(3), 698-710 (2006)

11.
Jung, S., and Regan, J. M., "Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors," Appl. Microbiol. Biotechnol., 77(2), 393-402 (2007) crossref(new window)

12.
Kim, J. R., Jung, S. H., Regan, J. M., and Logan, B. E., "Electricity generation and microbial community analysis of alcohol powered microbial fuel cells," Bioresour. Technol., 98(13), 2568-2577 (2007) crossref(new window)

13.
Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J., and Phung, N. T., "Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell," Appl. Microbiol. Biotechnol., 63(6), 672-681 (2004) crossref(new window)

14.
Phung, N. T., Lee, J., Kang, K. H., Chang, I. S., Gadd, G. M., and Kim, B. H., "Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences," FEMS Microbiol. Lett., 233(1), 77-82 (2004) crossref(new window)

15.
Logan, B. E., Murano, C., Scott, K., Gray, N. D., and Head, I. M., "Electricity generation from cysteine in a microbial fuel cell," Water Res., 39(5), 942-952 (2005) crossref(new window)

16.
Rabaey, K., and Verstraete, W., "Microbial fuel cells: novel biotechnology for energy generation," Trends Biotechnol., 23(6), 291-298 (2005) crossref(new window)

17.
Chang, I. S., Moon, H., Bretschger, O., Jang, J. K., Park, H. I., Nealson, K. H., and Kim, B. H., "Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells," J. Microbiol. Biotechnol., 16(2), 163-177 (2006)

18.
Lovley, D. R., "Microbial fuel cells: novel microbial physiologies and engineering approaches," Curr. Opin. Biotechnol., 17(3), 327-332 (2006) crossref(new window)

19.
Lovley, D. R., "Bug juice: harvesting electricity with microorganisms," Nat. Rev. Microbiol., 4(7), 497-508 (2006) crossref(new window)

20.
Pham, T. H., Rabaey, K., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Boon, N., and Verstraete, W., "Microbial fuel cells in relation to conventional anaerobic digestion technology," Eng. Life Sci., 6(3), 285-292 (2006) crossref(new window)

21.
Kim, B. H., Chang, I. S., and Gadd, G. M., "Challenges in microbial fuel cell development and operation," Appl. Microbiol. Biotechnol., 76(3), 485-494 (2007) crossref(new window)

22.
Du, Z. W., Li, H. R., and Gu, T. Y., "A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy," Biotech. Adv., 25(5), 464-482 (2007) crossref(new window)

23.
Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R., "Electrode-reducing microorganisms that harvest energy from marine sediments," Science, 295(5554), 483-485 (2002) crossref(new window)

24.
Park, D. H., and Zeikus, J. G., "Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation," J. Bacteriol., 181(8), 2403-2410 (1999)

25.
Rabaey, K., Lissens, G., Siciliano, S. D., and Verstraete, W., "A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency," Biotechnol. Lett., 25(18), 1531-1535 (2003) crossref(new window)

26.
Freguia, S., Rabaey, K., Yuan, Z., and Keller, J., "Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation," Environ. Sci. Technol., 41(8), 2915-2921 (2007) crossref(new window)

27.
Min, B., Cheng, S., and Logan, B. E., "Electricity generation using membrane and salt bridge microbial fuel cells," Water Res., 39(9), 1675-1686 (2005) crossref(new window)

28.
Cheng, S., Liu, H., and Logan, B. E., "Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells," Environ. Sci. Techol., 40(1), 364-369 (2006) crossref(new window)

29.
Moon, H., Chang, I. S., Jang, J. K., and Kim, B. H., "Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation," Biochem. Eng. J., 27(1), 59-65 (2005) crossref(new window)

30.
Clauwaert, P., Van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., and Verstraete, W., "Open air biocathode enables effective electricity generation with microbial fuel cells," Environ. Sci. Technol., 41(21), 7564-7569 (2007) crossref(new window)

31.
Chaudhuri, S. K., and Lovley, D. R., "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells," Nat. Biotechnol., 21(10), 1229-1232 (2003) crossref(new window)

32.
Park, D. H., and Zeikus, J. G., "Improved fuel cell and electrode designs for producing electricity from microbial degradation," Biotechnol. Bioeng., 81(3), 348-355 (2003) crossref(new window)

33.
Niessen, J., Schroder, U., Rosenbaum, M., and Scholz, F., "Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells," Electrochem. Commun., 6(6), 571-575 (2004) crossref(new window)

34.
Sharma, A. L., Annapoorni, S., and Malhotra, B. D., "Characterization of electrochemically synthesized poly(2-fluoroaniline) film and its application to glucose biosensor," Current Applied Physics, 3(2-3), 239-245 (2003) crossref(new window)

35.
Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H., and Lovley, D. R., "Harvesting energy from the marine sedimentwater interface II. Kinetic activity of anode materials," Biosens. Bioelectron., 21(11), 2058-2063 (2006) crossref(new window)

36.
Freguia, S., Rabaey, K., Yuan, Z., and Keller, J., "Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells," Electrochim. Acta, 53(2), 598-603 (2007) crossref(new window)

37.
Tartakovsky, B., and Guiot, S. R., "A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors," Biotechnol. Prog., 22(1), 241-246 (2006) crossref(new window)

38.
He, Z., and Angenent, L. T., "Application of bacterial biocathodes in microbial fuel cells," Electroanalysis, 18(19-20), 2009-2015 (2006) crossref(new window)

39.
Kim, J. R., Cheng, S., Oh, S. E., and Logan, B. E., "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells," Environ. Sci. Technol., 41(3), 1004-1009 (2007) crossref(new window)

40.
Rozendal, R. A., Hamelers, H. V. M., Molenkmp, R. J., and Buisman, J. N., "Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes," Water Res., 41(9), 1984-1994 (2007) crossref(new window)

41.
Chae, K. J., Choi, M., Ajayi, F. F., Park, W., Chang, I. S., and Kim, I. S., "Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells," Energy Fuels, 22(1), 169-176 (2008) crossref(new window)

42.
Rozendal, R. A., Hamelers, H. V. M., and Buisman, C. J. N., "Effects of membrane cation transport on pH and microbial fuel cell performance," Environ. Sci. Technol., 40(17), 5206-5211 (2006) crossref(new window)

43.
Bard, A. J., and Faulkner, L. R., Electrochemical methods: fundamentals and applications, Wiley, New York (1980)

44.
Larminie, J., and Dicks, A., Fuel Cell Systems Explained, Wiley, New York (2003)

45.
Liu, H., Cheng, S. A., and Logan, B. E., "Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration," Environ. Sci. Techol., 39(14), 5488-5493 (2005) crossref(new window)

46.
Cheng, S., Liu, H., and Logan, B. E., "Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing," Environ. Sci. Technol., 40(7), 2426-2432 (2006) crossref(new window)

47.
Pham, T. H., Jang, J. K., Chang, I. S., and Kim, B. H., "Improvement of cathode reaction of a mediatorless microbial fuel cell," J. Microbiol. Biotechnol., 14(2), 324-329 (2004)

48.
Schroder, U., Niessen, J., and Scholz, F., "A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude," Angew. Chem., Int. Ed., 42 (25), 2880-2883 (2003) crossref(new window)

49.
Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., and Verstraete, W., "Biofuel cells select for microbial consortia that self-mediate electron transfer," Appl. Environ. Microbiol., 70(9), 5373-5382 (2004) crossref(new window)

50.
Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W., "Tubular microbial fuel cells for efficient electricity generation," Environ. Sci. Technol., 39(20), 8077-8082 (2005) crossref(new window)

51.
Zhao, F., Harnisch, F., Schrorder, U., Scholz, F., Bogdanoff, P., and Herrmann, I., "Challenges and constraints of using oxygen cathodes in microbial fuel cells," Environ. Sci. Techol., 40(17), 5193-5199 (2006) crossref(new window)

52.
Moon, H., Chang, I. S., and Kim, B. H., "Continuous electricity production from artificial wastewater using a mediator- less microbial fuel cell," Bioresour. Technol., 97(4), 621-627 (2006) crossref(new window)

53.
Oh, S. E., and Logan, B. E., "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells," Appl. Microbiol. Biotechnol., 70(2), 162-169 (2006) crossref(new window)

54.
Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., and Verstraete, W., "Continuous electricity generation at high voltages and currents using stacked microbial fuel cells," Environ. Sci. Technol., 40(10), 3388-3394 (2006) crossref(new window)

55.
Bond, D. R., and Lovley, D. R., "Electricity production by Geobacter sulfurreducens attached to electrodes," Appl. Environ. Microbiol., 69(3), 1548-1555 (2003) crossref(new window)

56.
Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H., and Fredrickson, J. K., "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms," Proc. Natl. Acad. Sci. U. S. A., 103(30), 11358-11363 (2006)

57.
Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R., "Extracellular electron transfer via microbial nanowires," Nature, 435(7045), 1098-1101 (2005) crossref(new window)

58.
Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., and Lovley, D. R., "Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells," Appl. Environ. Microbiol., 72(11), 7345-7348 (2006) crossref(new window)

59.
Reimers, C. E., Stecher, H. A., Westall, J. C., Alleau, Y., Howell, K. A., Soule, L., White, H. K., and Girguis, P. R., "Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton," Appl. Environ. Microbiol., 73(21), 7029-7040 (2007) crossref(new window)

60.
Holmes, D. E., Bond, D. R., O'Neill, R. A., Reimers, C. E., Tender, L. R., and Lovley, D. R., "Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments," Microbial Ecol., 48(2), 178-190 (2004) crossref(new window)

61.
Jong, B. C., Kim, B. H., Chang, I. S., Liew, P. W. Y., Choo, Y. F., and Kang, G. S., "Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell," Environ. Sci. Technol., 40(20), 6449-6454 (2006) crossref(new window)

62.
Aelterman, P., Rabaey, K., Clauwaert, P., and Verstraete, W., "Microbial fuel cells for wastewater treatment," Water Sci. Technol., 54(8), 9-15 (2006)

63.
Choo, Y. F., Lee, J., Chang, I. S., and Kim, B. H., "Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate," J. Microbiol. Biotechnol., 16(9), 1481-1484 (2006)

64.
DiChristina, T. J., Moore, C. M., and Haller, C. A., "Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene," J. Bacteriol., 184(1), 142-151 (2002) crossref(new window)

65.
Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J., and Buisman, C. J. N., "Principle and perspectives of hydrogen production through biocatalyzed electrolysis," Int. J. Hydrogen Energy, 31(12), 1632-1640 (2006) crossref(new window)

66.
Liu, H., Grot, S., and Logan, B. E., "Electrochemically assisted microbial production of hydrogen from acetate," Environ. Sci. Technol., 39(11), 4317-4320 (2005) crossref(new window)

67.
Cheng, S., and Logan, B. E., "Sustainable and efficient biohydrogen production via electrohydrogenesis," Proc. Natl. Acad. Sci. U. S. A., 104(47), 18871-18873 (2007)

68.
Nath, K., and Das, D., "Hydrogen from biomass," Current Science, 85(3), 265-271 (2003)

69.
Holzman, D. C., "Microbe power!," Environ. Health Perspect., 113(11), A754-A757 (2005) crossref(new window)

70.
Min, B., and Logan, B. E., "Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell," Environ. Sci. Technol., 38(21), 5809-5814 (2004) crossref(new window)

71.
Chang, I. S., Moon, H., Jang, J. K., and Kim, B. H., "Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors," Biosens. Bioelectron., 20(9), 1856-1859 (2005) crossref(new window)

72.
Oh, S. E., and Logan, B. E., "Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies," Water Res., 39(19), 4673-4682 (2005) crossref(new window)

73.
Zuo, Y., Maness, P. C., and Logan, B. E., "Electricity production from steam-exploded corn stover biomass," Energy Fuels, 20(4), 1716-1721 (2006) crossref(new window)

74.
Min, B., Kim, J. R., Oh, S. E., Regan, J. M., and Logan, B. E., "Electricity generation from swine wastewater using microbial fuel cells," Water Res., 39(20), 4961-4968 (2005) crossref(new window)

75.
Liu, H., Ramnarayanan, R., and Logan, B. E., "Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell," Environ. Sci. Technol., 38(7), 2281-2285 (2004) crossref(new window)

76.
Gregory, K. B., Bond, D. R., and Lovley, D. R., "Graphite electrodes as electron donors for anaerobic respiration," Environ. Microbiol., 6(6), 596-604 (2004) crossref(new window)

77.
Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaire, L., Ham, T. H., Boeckx, P., Boon, N., and Verstraete, W., "Biological denitrification in microbial fuel cells," Environ. Sci. Technol., 41(9), 3354-3360 (2007) crossref(new window)

78.
Gregory, K. B., and Lovley, D. R., "Remediation and recovery of uranium from contaminated subsurface environments with electrodes," Environ. Sci. Technol., 39(22), 8943-8947 (2005) crossref(new window)

79.
Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., and Kim, H. J., "Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell," Biotechnol. Lett., 25(7), 541-545 (2003) crossref(new window)

80.
Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., and Kim, B. H., "Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor," Biosens. Bioelectron., 19(6), 607-613 (2004) crossref(new window)

81.
Logan, B. E., and Regan, J. M., "Microbial challenges and applications," Environ. Sci. Technol., 40(17), 5172-5180 (2006) crossref(new window)

82.
Delaney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. D., Stirling, J. L., and Thurston, C. F., "Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations," J. Chem. Technol. Biotechnol., 34 B(1), 13-27 (1984)

83.
Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., and Jones-Meehan, J. M., "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10," Environ. Sci. Technol., 40(8), 2629-2634 (2006) crossref(new window)

84.
Min, B. K., Cheng, S. A., and Logan, B. E., "Electricity generation using membrane and salt bridge microbial fuel cells," Water Res., 39(9), 1675-1686 (2005) crossref(new window)

85.
Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K., and Chang, H. I., "A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell," Anaerobe, 7(6), 297-306 (2001) crossref(new window)

86.
Vega, C. A., and Fernandez, I., "Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens," Bioelectrochemistry, 17(2), 217-222 (1987) crossref(new window)

87.
Logan, B., Cheng, S., Watson, V., and Estadt, G., "Graphite fiber brush anodes for increased power production in aircathode microbial fuel cells," Environ. Sci. Technol., 41(9), 3341-3346 (2007) crossref(new window)

88.
Cheng, S., Liu, H., and Logan, B. E., "Increased performance of single-chamber microbial fuel cells using an improved cathode structure," Electrochem. Commun., 8(3), 489-494 (2006) crossref(new window)

89.
Cheng, S. A., and Logan, B. E., "Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells," Electrochem. Commun., 9(3), 492-496 (2007) crossref(new window)

90.
HaoYu, E., Cheng, S., Scott, K., and Logan, B., "Microbial fuel cell performance with non-Pt cathode catalysts," J. Power Sources, 171(2), 275-281 (2007)

91.
Biffinger, J. C., Pietron, J., Ray, R., Little, B., and Ringeisen, B. R., "A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes," Biosens. Bioelectron., 22(8), 1672-1679 (2007) crossref(new window)

92.
Rabaey, K., Boon, N., Hofte, M., and Verstraete, W., "Microbial phenazine production enhances electron transfer in biofuel cells," Environ. Sci. Technol., 39(9), 3401-3408 (2005) crossref(new window)

93.
Reimers, C. E., Tender, L. M., Fertig, S., and Wang, W., "Harvesting energy from the marine sediment-water interface," Environ. Sci. Technol., 35(1), 192-195 (2001) crossref(new window)

94.
Kim, B. H., Park, D. H., Shin, P. K., Chang, I. S., and Kim, H. J., "Mediator-less biofuel cell," US Patent 5976719 (1999)

95.
Park, D. H., and Zeikus, J. G., "Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens," Appl. Microbiol. Biotechnol., 59(1), 58-61 (2002) crossref(new window)

96.
Tanisho, S., Kamiya, N., and Wakao, N., "Microbial fuel cell using Enterobacter aerogenes," Bioelectrochem. Bioenerg., 21(1), 25-32 (1989) crossref(new window)

97.
He, Z., Minteer, S. D., and Angenent, L. T., "Electricity generation from artificial wastewater using an upflow microbial fuel cell," Environ. Sci. Technol., 39(14), 5262-5267 (2005) crossref(new window)

98.
Rabaey, K., Ossieur, W., Verhaege, M., and Verstraete, W., "Continuous microbial fuel cells convert carbohydrates to electricity," Water Sci. Technol., 52(1-2), 515-523 (2005)

99.
Sell, D., Krämer, P., and Kreysa, G., "Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell," Appl. Microbiol. Biotechnol., 31(2), 211-213 (1989) crossref(new window)