Advanced SearchSearch Tips
Geno- and Ecotoxicity Evaluation of Silver Nanoparticles in Freshwater Crustacean Daphnia magna
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 15, Issue 1,  2010, pp.23-27
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2010.15.1.428
 Title & Authors
Geno- and Ecotoxicity Evaluation of Silver Nanoparticles in Freshwater Crustacean Daphnia magna
Park, Sun-Young; Choi, Jin-Hee;
  PDF(new window)
Genotoxic- and ecotoxic assessments of silver nanoparticles (AgNPs) were conducted on the freshwater crustacean Daphnia magna. AgNPs may have genotoxic effects on D. magna, given that the DNA strand breaks increased when exposed to this nanoparticle. Increased mortality was concomitantly observed with DNA damage in the AgNPs-exposed D. magna, which suggests AgNPs-induced DNA damage might provoke higher-level consequences. The results of the comparative toxicities of AgNPs and Ag ions suggest that AgNPs are slightly more toxic than Ag ions. Overall, these results suggest that AgNPs may be genotoxic toward D. magna, which may contribute to the knowledge relating to the aquatic toxicity of AgNPs on aquatic ecosystems, for which little data are available.
Daphnia magna;DNA damage;Ecotoxicity;Genotoxicity;Silver nanoparticles;
 Cited by
Preparation and characterization of nanocomposite heterogeneous cation exchange membranes modified by silver nanoparticles,Zarrinkhameh, Maryam;Zendehnam, Akbar;Hosseini, Sayed Mohsen;

The Korean Journal of Chemical Engineering, 2014. vol.31. 7, pp.1187-1193 crossref(new window)
Assessment of DNA damage and molecular responses in Labeo rohita (Hamilton, 1822) following short-term exposure to silver nanoparticles, Food and Chemical Toxicology, 2016, 96, 122  crossref(new windwow)
Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag, Aquatic Toxicology, 2013, 136-137, 79  crossref(new windwow)
Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment?, Nanotoxicology, 2014, 8, 5, 583  crossref(new windwow)
The Impact of Zeta Potential and Physicochemical Properties of TiO2-Based Nanocomposites on Their Biological Activity, International Journal of Applied Ceramic Technology, 2015, 12, 6, 1157  crossref(new windwow)
Perturbation of cellular mechanistic system by silver nanoparticle toxicity: Cytotoxic, genotoxic and epigenetic potentials, Advances in Colloid and Interface Science, 2015, 221, 4  crossref(new windwow)
Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis, Marine Environmental Research, 2013, 84, 51  crossref(new windwow)
Genotoxic effects of Ag2S and CdS nanoparticles in blue mussel (Mytilus edulis) haemocytes, Chemistry and Ecology, 2014, 30, 8, 719  crossref(new windwow)
Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research, Journal of Environmental Science and Health, Part A, 2014, 49, 13, 1588  crossref(new windwow)
Bioaccumulation of silver nanoparticles intoDaphnia magnafrom a freshwater algal diet and the impact of phosphate availability, Nanotoxicology, 2014, 8, 3, 305  crossref(new windwow)
Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape River crab (Potamanautes perlatus)following exposure to silver nanoparticles (AgNP), Journal of Toxicology and Environmental Health, Part A, 2016, 79, 2, 61  crossref(new windwow)
DNA changes inPseudomonas putidainduced by aluminum oxide nanoparticles using RAPD analysis, Desalination and Water Treatment, 2016, 57, 3, 1573  crossref(new windwow)
Size-Dependent Cytotoxicity of Thiolated Silver Nanoparticles Rapidly Probed by using Differential Pulse Voltammetry, ChemElectroChem, 2016, 3, 8, 1197  crossref(new windwow)
Ecotoxicological Effect of Sublethal Exposure to Zinc Oxide Nanoparticles on Freshwater Snail Biomphalaria alexandrina, Archives of Environmental Contamination and Toxicology, 2014, 67, 2, 192  crossref(new windwow)
Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles, Journal of Applied Toxicology, 2012, 32, 11, 867  crossref(new windwow)
Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems, Nanotoxicology, 2016, 10, 5, 521  crossref(new windwow)
Potential of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry to monitor the Ag body burden in individual Daphnia magna specimens exposed to Ag nanoparticles, Analytical Methods, 2013, 5, 5, 1130  crossref(new windwow)
Preparation and characterization of nanocomposite heterogeneous cation exchange membranes modified by silver nanoparticles, Korean Journal of Chemical Engineering, 2014, 31, 7, 1187  crossref(new windwow)
Rand BP, Peumans P, Forrest SR. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 2004;96:7519-7526. crossref(new window)

Zhai HJ, Sun DW, Wang HS. Catalytic properties of silica/silver nanocomposites. J. Nanosci. Nanotechnol. 2006;6:1968-1972. crossref(new window)

Yamamoto S, Watarai H. Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface. Langmuir 2006;22:6562-6569. crossref(new window)

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73:1712-1720. crossref(new window)

Maynard A, Michelson E. The Nanotechnology Consumer Product Inventory, Project on Emerging Nanotechnology, Woodrow Wilson International Center for Scholars [Internet]. Washington, DC; c2010 [cited 2006 Mar 23]. Available from:

Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004;77:126-134.

Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005;88:412-419. crossref(new window)

Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005;19:975-983. crossref(new window)

Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YYY,Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 2005;155:377-384. crossref(new window)

Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007;41:4158-4163. crossref(new window)

Eom HJ, Choi J. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol. Lett. 2009;187:77-83. crossref(new window)

Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ. Sci. Pollut. Res. 2006;13:225-232. crossref(new window)

Lovern SB, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environ. Toxicol. Chem. 2006;25:1132-1137. crossref(new window)

Handy RD, Shaw BJ. Ecotoxicity of nanomaterials to fish:challenges for ecotoxicity testing. Integr. Environ. Assess.Manag. 2007;3:458-460.

Lovern SB, Strickler JR, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C-60, and C(60)HxC (70)Hx). Environ. Sci. Technol. 2007;41:4465-4470. crossref(new window)

Houk VS, Waters MD. Genetic toxicology and risk assessment of complex environmental mixtures. Drug Chem. Toxicol.1996;19:187-219. crossref(new window)

Ohe T, Watanabe T, Wakabayashi K. Mutagens in surface waters: a review. Mutat. Res.-Rev. Mut. Res. 2004;567:109-149. crossref(new window)

Nehls S, Segner H. Comet assay with the fish cell line rainbow trout gonad-2 for in vitro genotoxicity testing of xenobiotics and surface waters. Environ. Toxicol. Chem.2005;24:2078-2087. crossref(new window)

Giesy JP, Graney RL, Newsted JL, et al. Comparison of three sediment bioassay methods using detroit river sediments. Environ. Toxicol. Chem. 1988;7:483-498. crossref(new window)

Atienzar FA, Cheung VV, Jha AN, Depledge MH. Fitness parameters and DNA effects are sensitive indicators of copper-induced toxicity in Daphnia magna. Toxicol. Sci. 2001;59:241-250. crossref(new window)

Park SY, Choi J. Cytotoxicity, genotoxicity and ecotoxicity assay using human cell and environmental species for the screening of the risk from pollutant exposure. Environ. Int. 2007;3:817-822.

Lee SW, Park K, Hong J, Choi J. Ecotoxicological evaluation of octachlorostyrene in fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem.2008;27:1118-1127. crossref(new window)

OECD Guidelines for testing of chemicals, section 2. Effects on biotic systems, Daphnia magna acute immobilization test 202. OECD; 1984. Available from: http://puck. als/1607310x/v1n2/s3/p1.

OECD Guidelines for testing of chemicals, section 2. Effects on biotic systems, Daphnia magna reproduction test 211. OECD; 1998. Available from: http://puck.sourceoecd. org/vl=2991300/cl=33/nw=1/rpsv/ij/oecdjournals/1607310 x/v1n2/s12/p1.

Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low-levels of dna damage in individual cells. Exp. Cell Res. 1988;175:184-191. crossref(new window)

Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005;113:823-839. crossref(new window)

Sayes CM, Wahi R, Kurian PA, et al. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 2006;92:174-185. crossref(new window)

Fujiwara K, Suematsu H, Kiyomiya E, Aoki M, Sato M, Moritoki N. Size-dependent toxicity of silica nano-particles to Chlorella kessleri. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2008;43:1167-1173. crossref(new window)

Yin H, Too HP, Chow GM. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 2005;26:5818-5826. crossref(new window)

Cotelle S, Ferard JF. Comet assay in genetic ecotoxicology: A review. Environ. Mol. Mutagen. 1999;34:246-255. crossref(new window)

Okamura H, Omori M, Luo R, Aoyama I, Liu D. Application of short-term bioassay guided chemical analysis for water quality of agricultural land run-off. Sci. Total Environ.1999;234:223-231. crossref(new window)

Kikuchi M, Sasaki Y, Wakabayashi M. Screening of organophosphate insecticide pollution in water by using Daphnia magna. Ecotoxicol. Environ. Saf. 2000;47:239-245. crossref(new window)

Lee SB, Choi J. Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem. 2006;25:3006-3014. crossref(new window)

Ji JH, Jung JH, Kim SS, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2007;19:857-871. crossref(new window)

Hidalgo E, Dominguez C. Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol. Lett. 1998;98:169-179. crossref(new window)

Clement JL, Jarrett PS. Antibacterial silver. Met. Based Drugs 1994;1:467-482. crossref(new window)

Silver S. Bacterial resistances to toxic metal ions - A review. Gene 1996;179:9-19. crossref(new window)

Roh JY, Sim SJ, Yi J, et al. Ecotoxicity of Silver Nanoparticles on the Soil Nematode Caenorhabditis elegans Using Functional Ecotoxicogenomics. Environ. Sci. Technol. 2009;43:3933-3940. crossref(new window)