JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characterization of Bottom Ash as an Adsorbent of Lead from Aqueous Solutions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 15, Issue 4,  2010, pp.207-213
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2010.15.4.207
 Title & Authors
Characterization of Bottom Ash as an Adsorbent of Lead from Aqueous Solutions
Gorme, Joan B.; Maniquiz, Marla C.; Kim, Soon-Seok; Son, Young-Gyu; Kim, Yun-Tae; Kim, Lee-Hyung;
  PDF(new window)
 Abstract
This study investigated the potential of using bottom ash to be used as an adsorbent for the removal of lead (Pb) from aqueous solutions. The physical and chemical characteristics of bottom ash were determined, with a series of leaching and adsorption experiments performed to evaluate the suitability of bottom ash as an adsorbent material. Trace elements were present, such as silicon and aluminum, indicating that the material had a good adsorption capacity. All heavy metals leached during the Korea standard leaching test (KSLT) passed the regulatory limits for safe disposal, while batch adsorption experiments showed that bottom ash was capable of adsorbing Pb (experimental
 Keywords
Adsorption;Bottom ash;Equilibrium isotherm;Kinetic constant;Leaching;Lead;
 Language
English
 Cited by
1.
Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies,;;;

Environmental Engineering Research, 2012. vol.17. 3, pp.125-132 crossref(new window)
2.
Single and binary adsorption of Cd (II) and Zn (II) ions from aqueous solutions onto bottom ash,;;;;;

The Korean Journal of Chemical Engineering, 2015. vol.32. 5, pp.896-902 crossref(new window)
1.
Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Cd (II) and Zn (II) ions from Aqueous Solutions onto Bottom Ash, International Journal of Environmental Science and Development, 2014, 165  crossref(new windwow)
2.
Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies, Environmental Engineering Research, 2012, 17, 3, 125  crossref(new windwow)
3.
Overview on the Potential of Coal-Based Bottom Ash as Low-Cost Adsorbents, ACS Sustainable Chemistry & Engineering, 2016, 4, 4, 1870  crossref(new windwow)
4.
Single and binary adsorption of Cd (II) and Zn (II) ions from aqueous solutions onto bottom ash, Korean Journal of Chemical Engineering, 2015, 32, 5, 896  crossref(new windwow)
5.
Reuse options for coal fired power plant bottom ash and fly ash, Reviews in Environmental Science and Bio/Technology, 2014, 13, 4, 467  crossref(new windwow)
6.
Wertstoffgewinnung aus Kraftwerksaschen Teil I: Charakterisierung von Braunkohlenkraftwerksaschen zur Gewinnung strategischer Metalle, Chemie Ingenieur Technik, 2015, 87, 10, 1383  crossref(new windwow)
7.
Innovative utilization of coal bottom ash for bioremediation of toxic organic pollutants, International Biodeterioration & Biodegradation, 2013, 85, 421  crossref(new windwow)
 References
1.
Ministry of Environment (MOE). Management of drinking water quality [Internet]. Gwacheon: MOE; c2009 [cited 2010 Oct 10]. Available from: http://eng.me.go.kr/content.do?method=moveContent&menuCode=pol_wss_sup_pol_drinking.

2.
Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Chii YY, Siddique BM. Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalination 2009;247:636-646. crossref(new window)

3.
Kim MS, Sung CH, Chung JG. Adsorption of Pb(II) on metal oxide particles containing aluminum and titanium in aqueous solutions. Eviron. Eng. Res. 2005;10:45-53. crossref(new window)

4.
Aluyor EO, Oboh IO, Obahiagbon KO. Equilibrium sorption isotherm for lead (Pb) ions on hydrogen peroxide modified rice hulls. Int. J. Phys. Sci. 2009;4:423-427.

5.
Gueu S, Yao B, Adouby K, Ado G. Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int. J. Environ. Sci. Tech. 2007;4:11-17. crossref(new window)

6.
Khan TA, Singh V, Ali I. Sorption of Cd(II), Pb(II), and Cr(VI) metal ions from wastewater using bottom fly ash as a low cost sorbent. J. Environ. Protect. Sci. 2009;3:124-132.

7.
Igwe JC, Abia AA. Equilibrium sorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions detoxification from waste water using unmodified and EDTA-modified maize husk. Electron. J. Biotechno. 2007;10:536-548.

8.
Um NI, Ahn JW, Han GC, You KS, Lee SJ, Cho HC. Characteristic of magnetic-substance classification from coal bottom ash using wet magnetic separator. In: 3rd World of Coal Ash Conference; 2009 May 4-7; Lexington, KY.

9.
Kim SY, Tanaka N, Matsuto T. Solubility and adsorption characteristics of Pb in leachate from MSW incinerator bottom ash. Waste Manage. Res. 2002;20:373-381. crossref(new window)

10.
Shim YS, Kim YK, Kong SH, Rhee SW, Lee WK. The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Manage. 2003;23:851-857. crossref(new window)

11.
Sim YS, Lee WK. Preparation of adsorbent from MSWI ash. J. Korean Soc. Environ. Eng. 2001;23:379-388.

12.
Ozkan O, Yuksel I, Muratoglu O. Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag. Waste Manage. 2007;27:161-167. crossref(new window)

13.
United States Geological Survey (USGS). Arsenic in coal [Internet]. U.S. Geological Survey Fact Sheet 2005-3152; c2006 [cited 2010 Oct 18]. Available from: http://pubs.usgs.gov/fs/2005/3152/index.html.

14.
Lagergren S. About the theory of so-called adsorption of soluble substances. Sven. Veten. Hand. 1898;24:1-39.

15.
Ho YS, McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Protect. 1998;76:332-340. crossref(new window)

16.
Low MJD. Kinetics of chemisorption of gases on solids. Chem. Rev. 1960;60:267-312. crossref(new window)

17.
Freundlic HMF. Uber die adsorption in losungen. Zeitschrift fur Physikalische Chemie. 1906;57A:385-470.