JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 16, Issue 4,  2011, pp.187-203
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2011.16.4.187
 Title & Authors
Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review
Gunawardana, Buddhika; Singhal, Naresh; Swedlund, Peter;
  PDF(new window)
 Abstract
Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.
 Keywords
Chlorophenols;Bimetals;Dechlorination;Iron oxides;Passivation;Sorption;Zero valent iron;
 Language
English
 Cited by
1.
Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation, Environmental Science and Pollution Research, 2016, 23, 18, 17880  crossref(new windwow)
2.
Graphene encapsulated FexCoynanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate, Catal. Sci. Technol., 2016, 6, 20, 7486  crossref(new windwow)
3.
Enhanced removal of dissolved aniline from water under combined system of nano zero-valent iron and Pseudomonas putida, Sustainable Water Resources Management, 2016, 2, 2, 143  crossref(new windwow)
4.
Co-contamination of water with chlorinated hydrocarbons and heavy metals: challenges and current bioremediation strategies, International Journal of Environmental Science and Technology, 2013, 10, 2, 395  crossref(new windwow)
5.
Sonophotocatalytic treatment of Bismarck Brown G dye and real textile effluent using synthesized novel Fe(0)-doped TiO2catalyst, RSC Adv., 2015, 5, 14, 10440  crossref(new windwow)
6.
Effect of Coupling Zero-Valent Iron Side Filters on the Performance of Bioreactors Fed with a High Concentration of Perchloroethylene, Journal of Environmental Engineering, 2016, 142, 11, 04016051  crossref(new windwow)
7.
Removal of micropollutants by ozone based processes, Chemical Engineering and Processing: Process Intensification, 2015, 94, 78  crossref(new windwow)
8.
Removal of bisphenol A by iron nanoparticle-doped magnetic ordered mesoporous carbon, RSC Adv., 2016, 6, 31, 25724  crossref(new windwow)
9.
Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: A comparative study, Journal of Hazardous Materials, 2014, 265, 201  crossref(new windwow)
10.
Application of bimetallic iron (BioCAT slurry) for pentachlorophenol removal from sandy soil, Journal of Hazardous Materials, 2013, 252-253, 83  crossref(new windwow)
11.
Synthesis and use of bimetals and bimetal oxides in contaminants removal from water: a review, RSC Adv., 2015, 5, 104, 85395  crossref(new windwow)
12.
Catalytic hydrodechlorination reaction of chlorophenols by Pd nanoparticles supported on graphene, Research on Chemical Intermediates, 2016, 42, 1, 71  crossref(new windwow)
13.
Magnetic nanoparticles: Essential factors for sustainable environmental applications, Water Research, 2013, 47, 8, 2613  crossref(new windwow)
14.
Iron Nanoparticle-Induced Activation of Plasma Membrane H+-ATPase Promotes Stomatal Opening inArabidopsis thaliana, Environmental Science & Technology, 2015, 49, 2, 1113  crossref(new windwow)
15.
Noncovalent and covalent immobilization of oxygenase on single-walled carbon nanotube for enzymatic decomposition of aromatic hydrocarbon intermediates, Environmental Science and Pollution Research, 2016, 23, 2, 1015  crossref(new windwow)
16.
Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater, Chemosphere, 2013, 90, 2, 627  crossref(new windwow)
17.
Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids, Water Research, 2015, 73, 342  crossref(new windwow)
18.
Considerable Fenton and photo-Fenton reactivity of passivated zero-valent iron, RSC Adv., 2016, 6, 89, 86752  crossref(new windwow)
19.
Efficient Electrochemical Reduction of Nitrobenzene by Defect-Engineered TiO2–xSingle Crystals, Environmental Science & Technology, 2016, 50, 10, 5234  crossref(new windwow)
 References
1.
Keane MA. A review of catalytic approaches to waste minimization: case study--liquid-phase catalytic treatment of chlorophenols. J. Chem. Technol. Biotechnol. 2005;80:1211-1222. crossref(new window)

2.
Arcand Y, Hawari J, Guiot SR. Solubility of pentachlorophenol in aqueous solutions: the pH effect. Water Res. 1995;29:131-136. crossref(new window)

3.
Agency for Toxic Substances and Disease Registry. Toxicological profile for chlorophenols. Atlanta: Agency for Toxic Substances and Disease Registry, U.S Department of Health and Human Services; 1999.

4.
Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B. Environ. 2004;47:219-256. crossref(new window)

5.
Kim YH, Carraway ER. Dechlorination of chlorinated phenols by zero valent zinc. Environ. Technol. 2003;24:1455-1463. crossref(new window)

6.
Patel UD, Suresh S. Electrochemical treatment of pentachlorophenol in water and pulp bleaching effluent. Sep. Purif. Technol. 2008;61:115-122. crossref(new window)

7.
Keith L, Telliard W. Priority pollutants. I. A perspective view. Environ. Sci. Technol. 1979;13:416-423. crossref(new window)

8.
U.S. Environmental Protection Agency. Protection of environment: toxic pollutants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jul 10]. Available from: http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div8&view=text&node=40:28.0.1.1.2.0.1.6&idno=40.

9.
U.S. Environmental Protection Agency. Priority pollutants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jun 6]. Available from: http://water.epa.gov/scitech/methods/cwa/pollutants.cfm.

10.
Tanjore S, Viraraghavan T. Pentachlorophenol--water pollution impacts and removal technologies. Int. J. Environ. Stud. 1994;45:155-164. crossref(new window)

11.
U.S. Environmental Protection Agency. Drinking water contaminants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jun 6]. Available from: http://water.epa.gov/drink/contaminants/index.cfm.

12.
U.S. Environmental Protection Agency. Toxicological review of pentachlorophenol: in support of summary information on the Integrated Risk Information System (IRIS). Washington, DC: U.S. Environmental Protection Agency; 2010. p. 288.

13.
McLean D, Eng A, Dryson E, et al. Morbidity in former sawmill workers exposed to pentachlorophenol (PCP): a cross-sectional study in New Zealand. Am. J. Ind. Med. 2009;52:271-281. crossref(new window)

14.
Wightman PG, Fein JB. Experimental study of 2,4,6-Trichlorophenol and pentachlorophenol solubilities in aqueous solutions: derivation of a speciation-based chlorophenol solubility model. Appl. Geochem. 1999;14:319-331. crossref(new window)

15.
Shiu WY, Ma KC, Varhanickova D, Mackay D. Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 1994;29:1155-1224. crossref(new window)

16.
Anotai J, Wuttipong R, Visvanathan C. Oxidation and detoxification of pentachlorophenol in aqueous phase by ozonation. J. Environ. Manage. 2007;85:345-349. crossref(new window)

17.
Dai Y, Li F, Ge F, Zhu F, Wu L, Yang X. Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron. J. Hazard. Mater. 2006;137:1424-1429. crossref(new window)

18.
Tamer E, Hamid Z, Aly AM, Ossama ET, Bo M, Benoit G. Sequential UV-biological degradation of chlorophenols. Chemosphere 2006;63:277-284. crossref(new window)

19.
Dabo P, Cyr A, Laplante F, Jean F, Menard H, Lessard J. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ. Sci. Technol. 2000;34:1265-1268. crossref(new window)

20.
De AK, Dutta BK, Bhattacharjee S. Reaction kinetics for the degradation of phenol and chlorinated phenols using fenton's reagent. Environ. Prog. 2006;25:64-71. crossref(new window)

21.
Yang CF, Lee CM. Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system. J. Hazard. Mater. 2008;152:159-165. crossref(new window)

22.
Singh S, Chandra R, Patel DK, Reddy MM, Rai V. Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture. Bioresour. Technol. 2008;99:5703-5709. crossref(new window)

23.
Van Nooten T, Springael D, Bastiaens L. Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers. Environ. Sci. Technol. 2008;42:1680-1686. crossref(new window)

24.
Headley JV, Peru KM, Du JL, Gurprasad N, McMartin DW. Evaluation of the apparent phytodegradation of pentachlorophenol by Chlorella pyrenoidosa. J. Environ. Sci. Health A. Toxic. Hazard. Subst. Environ. Eng. 2008;43:361-364. crossref(new window)

25.
Morales J, Hutcheson R, Cheng IF. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles. J. Hazard. Mater. 2002;90:97-108. crossref(new window)

26.
Kim YH, Carraway ER. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Technol. 2000;34:2014-2017. crossref(new window)

27.
Patel UD, Suresh S. Effects of solvent, pH, salts and resin fatty acids on the dechlorination of pentachlorophenol using magnesium-silver and magnesium-palladium bimetallic systems. J. Hazard. Mater. 2008;156:308-316. crossref(new window)

28.
Choi JH, Choi SJ, Kim YH. Hydrodechlorination of 2,4,6-trichlorophenol for a permeable reactive barrier using zero-valent iron and catalyzed iron. Korean J. Chem. Eng. 2008;25:493-500. crossref(new window)

29.
Choi JH, Kim YH. Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc. J. Hazard. Mater. 2009;166:984-991. crossref(new window)

30.
Marshall WD, Kubatova A, Lagadec AJ, Miller DJ, Hawthorne SB. Zero-valent metal accelerators for the dechlorination of pentachlorophenol (PCP) in subcritical water. Green Chem. 2002;4:17-23. crossref(new window)

31.
Cheng R, Zhou W, Wang JL, et al. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect. J. Hazard. Mater. 2010;180:79-85. crossref(new window)

32.
Estevinho BN, Ratola N, Alves A, Santos L. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues. J. Hazard. Mater. 2006;137:1175-1181. crossref(new window)

33.
Estevinho BN, Martins I, Ratola N, Alves A, Santos L. Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. J. Hazard. Mater. 2007;143:535-540. crossref(new window)

34.
Deng S, Ma R, Yu Q, Huang J, Yu G. Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. J. Hazard. Mater. 2008.

35.
Mathialagan T, Viraraghavan T. Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresour. Technol. 2009;100:549-558. crossref(new window)

36.
Jou CJ. Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy. J. Hazard. Mater. 2008;152:699-702. crossref(new window)

37.
Zhang W, Quan X, Wang J, Zhang Z, Chen S. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere 2006;65:58-64. crossref(new window)

38.
Lee SH, Carberry JB. Biodegradation of PCP enhanced by chemical oxidation pretreatment. Water Environ. Res 1992;64:682-690. crossref(new window)

39.
Choi JH, Kim YH, Choi SJ. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: laboratory studies. Chemosphere 2007;67:1551-1557. crossref(new window)

40.
Chen YC, Lan HX, Zhan HY, Fu SY. Simultaneous anaerobic-aerobic biodegradation of halogenated phenolic compound under oxygen-limited conditions. J. Environ. Sci. 2005;17:873-875.

41.
Bokare AD, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 2009;43:7130-7135. crossref(new window)

42.
Boronina T, Klabunde KJ, Sergeev G. Destruction of organohalides in water using metal particles: carbon tetrachloride/water reactions with magnesium, tin, and zinc. Environ. Sci. Technol. 1995;29:1511-1517. crossref(new window)

43.
Arning MD, Minteer SD. Electrode potentials. In: Zoski CG, ed. Handbook of electrochemistry. Boston: Elsevier; 2007. p. 813-827.

44.
Speight JG. Lange's handbook of chemistry. 16th ed. New York: McGraw-Hill; 2005. p. 1572.

45.
Zhang WX, Wang CB, Lien HL. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 1998;40:387-395. crossref(new window)

46.
Gavaskar AR. Design and construction techniques for permeable reactive barriers. J. Hazard. Mater. 1999;68:41-71. crossref(new window)

47.
Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ. Eng. Sci. 2007;24:401-423. crossref(new window)

48.
Thiruvenkatachari R, Vigneswaran S, Naidu R. Permeable reactive barrier for groundwater remediation. J. Ind. Eng. Chem. 2008;14:145-156. crossref(new window)

49.
Gillham RW, Ohannesin SF. Enhanced degradation of halogenated aliphatics by zero valent iron. Ground Water 1994;32:958-967. crossref(new window)

50.
Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994;28:2045-2053. crossref(new window)

51.
Johnson TL, Scherer MM, Tratnyek PG. Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 1996;30:2634-2640. crossref(new window)

52.
Lien HL, Zhang WX. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf. A. Physicochem. Eng. Asp. 2001;191:97-105. crossref(new window)

53.
McDowall L. Degradation of toxic chemicals by zero-valent metal nanoparticles--a literature review. Defence Science and Technology Organisation, Australia; 2005.

54.
Ko SO, Lee DH, Kim YH. Kinetic studies of reductive dechlorination of chlorophenols with Ni/Fe bimetallic particles. Environ. Technol. 2007;28:583-593. crossref(new window)

55.
Wei J, Xu X, Liu Y, Wang D. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res. 2006;40:348-354. crossref(new window)

56.
Liu Y, Yang F, Yue PL, Chen G. Catalytic dechlorination of chlorophenols in water by palladium/iron. Water Res. 2001;35:1887-1890. crossref(new window)

57.
Zhou T, Li Y, Lim TT. Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: comparisons with other bimetallic systems, kinetics and mechanism. Sep. Purif. Technol. 2010;76:206-214. crossref(new window)

58.
Tong SP, Wei H, Ma CA, Liu WP. Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water. J. Zhejiang Univ. Science 2005;6A:627-631. crossref(new window)

59.
Jovanovic GN, Plazl PZ, Sakrittichai P, Al-Khaldi K. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst. Ind. Eng. Chem. Res. 2004;44:5099-5106.

60.
Arnold WA, Roberts AL. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 2000;34:1794-1805. crossref(new window)

61.
Schlicker O, Ebert M, Fruth M, Weidner M, Wust W, Dahmke A. Degradation of TCE with iron: the role of competing chromate and nitrate reduction. Ground Water 2000;38:403-409. crossref(new window)

62.
Chen JL, Al-Abed SR, Ryan JA, Li Z. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. J. Hazard. Mater. 2001;83:243-254. crossref(new window)

63.
Geiger Cherie L, Carvalho-Knighton K, Novaes-Card S, Maloney P, DeVor R. A review of environmental applications of nanoscale and microscale reactive metal particles. ACS Symp. Ser. 2009;1027:1-20.

64.
Cho HH, Park JW. Effect of coexisting compounds on the sorption and reduction of trichloroethylene with iron. Environ. Toxicol. Chem. 2005;24:11-16. crossref(new window)

65.
Kim YH. Reductive dechlorination of chlorinated aliphatic and aromatic compounds using zero valent metals: modified metals and electron mediators [dissertation]. College Station: Texas A&M University; 1999.

66.
Cheng R, Wang Jl, Zhang WX. Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0. J. Hazard. Mater. 2007;144:334-339. crossref(new window)

67.
Noubactep C, Care S. On nanoscale metallic iron for groundwater remediation. J. Hazard. Mater. 2010;182:923-927. crossref(new window)

68.
Lim TT, Zhu BW. Practical applications of bimetallic nanoiron particles for reductive dehalogenation of haloorganics: prospects and challenges. ACS Symp. Ser. 2009;1027:245-261.

69.
Burris DR, Allen-King RM, Manoranjan VS, Campbell TJ, Loraine GA, Deng B. Chlorinated ethene reduction by cast iron: sorption and mass transfer. J. Environ. Eng. 1998;124:1012-1019. crossref(new window)

70.
Deng B, Hu S, Whitworth TM, Lee R. Trichloroethylene reduction on zero valent iron: probing reactive versus nonreactive sites. ACS Symp. Ser. 2003;837:181-205.

71.
Bi E, Devlin JF, Huang B, Firdous R. Transport and kinetic studies To characterize reactive and nonreactive sites on granular iron. Environ. Sci. Technol. 2010;44:5564-5569. crossref(new window)

72.
Burris DR, Campbell TJ, Manoranjan VS. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environ. Sci. Technol. 1995;29:2850-2855. crossref(new window)

73.
Gotpagar J, Lyuksyutov S, Cohn R, Grulke E, Bhattacharyya D. Reductive dehalogenation of trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies. Langmuir 1999;15:8412-8420. crossref(new window)

74.
Noubactep C. A critical review on the process of contaminant removal in Fe 0-H2O systems. Environ. Technol. 2008;29:909-920. crossref(new window)

75.
Weber EJ. Iron-mediated reductive transformations: investigation of reaction mechanism. Environ. Sci. Technol. 1996;30:716-719. crossref(new window)

76.
Su C, Puls RW. Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 1999;33:163-168. crossref(new window)

77.
Deng B, Burris DR, Campbell TJ. Reduction of vinyl chloride in metallic iron-water systems. Environ. Sci. Technol. 1999;33:2651-2656. crossref(new window)

78.
Xu X, Zhou M, He P, Hao Z. Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water. J. Hazard. Mater. 2005;123:89-93. crossref(new window)

79.
Doong RA, Wu SC. Reductive dechlorination of chlorinated hydrocarbons in aqueous solutions containing ferrous and sulfide ions. Chemosphere 1992;24:1063-1075. crossref(new window)

80.
Wang J, Farrell J. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy. Environ. Sci. Technol. 2003;37:3891-3896. crossref(new window)

81.
Li T, Farrell J. Mechanisms controlling chlorocarbon reduction at iron surfaces. ACS Symp. Ser. 2002;806:397-410.

82.
Kim JS, Shea PJ, Yang JE, Kim JE. Halide salts accelerate degradation of high explosives by zerovalent iron. Environ. Pollut. 2007;147:634-641. crossref(new window)

83.
Fontana MG, Greene ND. Corrosion engineering. 2nd ed. New York: McGraw-Hill; 1978.

84.
Jones DA. Principles and prevention of corrosion. 2nd ed. Upper Saddle River: Prentice Hall; 1996.

85.
Choi JH, Choi SJ, Kim YH. Liquid-liquid extraction methods to determine reductive dechlorination of 2,4,6-trichlorophenol by zero-valent metals and zero-valent bimetals. Sep. Sci. Technol. 2008;43:3624-3636. crossref(new window)

86.
Bandara J, Mielczarski JA, Kiwi J. I. Adsorption mechanism of chlorophenols on iron oxides, titanium oxide and aluminum oxide as detected by infrared spectroscopy. Appl. Catal. B. Environ. 2001;34:307-320. crossref(new window)

87.
Kung KH, McBride MB. Bonding of chlorophenols on iron and aluminum oxides. Environ. Sci. Technol. 1991;25:702-709. crossref(new window)

88.
Noubactep C. The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 2010;36:663-670.

89.
Noubactep C. Processes of contaminant removal in "Fe0-$H_2O$" systems revisited: the importance of co-precipitation Open Environ. J. 2007;1:9-13. crossref(new window)

90.
U.S. Environmental Protection Agency. Permeable reactive barrier technologies for contaminant remediation. Washington, DC: U.S. Environmental Protection Agency; 1998.

91.
Farrell J, Kason M, Melitas N, Li T. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 2000;34:514-521. crossref(new window)

92.
Huang YH, Zhang TC, Shea PJ, Comfort SD. Effects of oxide coating and selected cations on nitrate reduction by iron metal. J. Environ. Qual. 2003;32:1306-1315. crossref(new window)

93.
Satapanajaru T, Comfort SD, Shea PJ. Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J. Environ. Qual. 2003;32:1726-1734. crossref(new window)

94.
Ritter K, Odziemkowski MS, Simpgraga R, Gillham RW, Irish DE. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron. J. Contam. Hydrol. 2003;65:121-136. crossref(new window)

95.
Kiser JR, Manning BA. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite. J. Hazard. Mater. 2010;174:167-174. crossref(new window)

96.
Schrick B, Blough JL, Jones AD, Mallouk TE. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater. 2002;14:5140-5147. crossref(new window)

97.
Patel UD, Suresh S. Dechlorination of chlorophenols using magnesium-palladium bimetallic system. J. Hazard. Mater. 2007;147:431-438. crossref(new window)

98.
Chen LH, Huang CC, Lien HL. Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 2008;73:692-697. crossref(new window)

99.
Wang X, Chen C, Liu H, Ma J. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Ind. Eng. Chem. Res. 2008;47:8645-8651. crossref(new window)