Advanced SearchSearch Tips
An Efficiency Evaluation of Iron Concentrates Flotation Using Rhamnolipid Biosurfactant as a Frothing Reagent
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 17, Issue 1,  2012, pp.9-15
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2012.17.1.009
 Title & Authors
An Efficiency Evaluation of Iron Concentrates Flotation Using Rhamnolipid Biosurfactant as a Frothing Reagent
Khoshdast, Hamid; Sam, Abbas;
  PDF(new window)
The effect of a rhamnolipid biosurfactant produced by a Pseudomonas aeruginosa MA01 strain on desulfurization of iron concentrates was studied. Surface tension measurement and frothing characterization indicated better surface activity and frothability of rhamnolipid compared to methyl isobutyl carbinol (MIBC) as an operating frother. Reverse flotation tests using rhamnolipid either as a sole frother or mixed with MIBC, showed that the desulfurization process is more efficient at pH 4.5 and high concentration of rhamnolipid in the presence of MIBC. However, under these conditions water recovery decreased due to the change in rhamnolipid aggregates morphology. Results from the present study seemed promising to introduce the biosurfactant from Pseudomonas aeruginosa as a new frother.
Desulfurization;Froth flotation;Iron concentrate;Rhamnolipid biosurfactant;
 Cited by
Microbes Assisted Mineral Flotation a Future Prospective for Mineral Processing Industries: A Review, Mineral Processing and Extractive Metallurgy Review, 2017, 38, 2, 96  crossref(new windwow)
Ishigami Y. Characterization and functionalization of biosurfactants. In: Esumi K, Ueno M, eds. Structure-performance relationships in surfactants. 2nd ed. New York: Marcel Dekker Inc.; 2003. p. 285-308.

Fu H, Zeng G, Zhong H, et al. Effects of rhamnolipid on degradation of granular organic substrate from kitchen waste by a Pseudomonas aeruginosa strain. Colloids Surf. B Biointerfaces 2007;58:91-97. crossref(new window)

Helvaci SS, Peker S, Ozdemir G. Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloids Surf. B Biointerfaces 2004;35:225-233. crossref(new window)

Ozdemir G, Peker S, Helvaci SS. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloids Surf. A Physicochem. Eng. Asp. 2004;234:135-143. crossref(new window)

Cohen R, Exerowa D. Surface forces and properties of foam films from rhamnolipid biosurfactants. Adv. Colloid. Interface Sci. 2007;134-135:24-34. crossref(new window)

Sanchez M, Aranda FJ, Espuny MJ, et al. Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. J. Colloid Interface Sci. 2007;307:246-253. crossref(new window)

York JD, Firoozabadi A. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration. J. Phys. Chem. B 2008;112:845-851. crossref(new window)

Pornsunthorntawee O, Chavadej S, Rujiravanit R. Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Colloids Surf. B Biointerfaces 2009;72:6-15. crossref(new window)

Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour. Technol. 2008;99:1589-1595. crossref(new window)

Guo YP, Hu YY, Gu RR, Lin H. Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146. J. Colloid Interface Sci. 2009;331:356-363. crossref(new window)

Hanumantha Rao K, Vilinska A, Chernyshova IV. Minerals bioprocessing: R & D needs in mineral biobeneficiation. Hydrometall. 2010;104:465-470. crossref(new window)

Khoshdast H, Sam A. Flotation frothers: review of their classifications, properties and preparation. Open Miner. Process. J. 2011;4:25-44. crossref(new window)

Fazaelipoor MH, Khoshdast H, Ranjbar M. Coal flotation using a biosurfactant from Pseudomonas aeruginosa as a frother. Korean J. Chem. Eng. 2010;27:1527-1531. crossref(new window)

Engelbrecht JA, Woodburn ET. The effects of froth height, aeration rate, and gas precipitation on flotation. J. S. Afr. Inst. Min. Metall. 1975;76:125-132.

Banford AW, Aktas Z, Woodburn ET. Interpretation of the effect of froth structure on the performance of froth flotation using image analysis. Powder Technol. 1998;98:61-73. crossref(new window)

Neethling SJ, Cilliers JJ. The entrainment of gangue into flotation froths. Int. J. Miner. Process. 2002;64:123-134. crossref(new window)

Ekmekci Z, Bradshaw DJ, Harris PJ, Buswell MA. Interactive effects of the type of milling media and CuSO4 addition on the flotation performance of sulphide minerals from Merensky ore part II: froth stability. Int. J. Miner. Process. 2006;78:164-174. crossref(new window)

ChemSW. Chemsite pro demo software [Internet]. Fairfield: ChemSW Inc.; c2012. Availabe from:

Hein M. Foundations of college chemistry: the alternative edition. New York: Brooks/Cole Publishing Company; 1980.

Luan F, Liu H, Gao Y, Li Q, Zhang X, Guo Y. Prediction of hydrophile- lipophile balance values of anionic surfactants using a quantitative structure-property relationship. J. Colloid Interface Sci. 2009;336:773-779. crossref(new window)

Guo X, Rong Z, Ying X. Calculation of hydrophile-lipophile balance for polyethoxylated surfactants by group contribution method. J. Colloid and Interface Sci. 2006;298:441-450. crossref(new window)

Bulatovic SM. Handbook of flotation reagents. Amsterdam: Elsevier; 2007.

Montgomery DC. Design and analysis of experiments. 5th ed. New York: John Wiley & Sons; 2001.

Xia Y, Peng FF. Frothability characterization of residual organic solvents. Miner. Eng. 2007;20:241-251. crossref(new window)

Cho YS, Laskowski JS. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 2002;64:69-80. crossref(new window)

Melo F, Laskowski JS. Fundamental properties of flotation frothers and their effect on flotation. Miner. Eng. 2006;19:766-773. crossref(new window)

Rezaei B. Flotation. Tehran: Tehran University Press; 1996.

Laskowski JS. Fundamental properties of flotation frothers. In: Proceedings of the 22nd International Mineral Processing Congress; 2003 Sep 29 - Oct 3; Cape Twon, South Africa. p. 788-797.

Laskowski JS. Testing flotation frothers. Physicochem. Prob. Miner. Process. 2004;38: 13-22.

Khoshdast H, Sam A, Manafi Z. Comparison of surface activity from rhamnolipid biosurfactants and industrial flotation frothers. In: The 1st National Copper Conference; 2011: Iran. p. 544-552.

Ishigami Y, Gama Y, Nagahora H, Yamaguchi M, Nakahara H, Kamata T. The pH sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem. Lett. 1987;16:763-766.

Boekhoven J. Self-assembling systems - research - orthogonal self-assembly. Delft: Delft University of Technology; 2009 [cited 2011 May 1]. Available from:

Benincasa M, Marqués A, Pinazo A, Manresa A. Rhamnolipid surfactants: alternative substrates, new strategies. In: Sen R, ed. Biosurfactants. New York: Springer Science; 2010. p. 170-184.

Champion JT, Gilkey JC, Lamparski H, Retterer J, Miller RM. Electron-microscopy of rhamnolipid (biosurfactant) morphology: effects of pH, cadmium, and octadecane. J. Colloid Interface Sci. 1995;170:569-574. crossref(new window)

Ozdemir G, Malayglu U. Wetting characteristics of aqueous rhamnolipids solutions. Colloids Surf. B Biointerfaces 2004;39:1-7. crossref(new window)