Advanced SearchSearch Tips
Environmental Applications of Rare-Earth Manganites as Catalysts: A Comparative Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 18, Issue 4,  2013, pp.211-219
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2013.18.4.211
 Title & Authors
Environmental Applications of Rare-Earth Manganites as Catalysts: A Comparative Study
Alami, D.;
  PDF(new window)
Rare-earth manganites have a great potential for environmental applications based on their chemical and physical properties. The use of rare-earth manganites as catalysts for environmentally essential reactions was reviewed. Artificial neural networks were used to assess the catalytic activity in oxidation reactions. Relative catalytic activities of the catalysts were further discussed. We concluded that cerium manganite is the most practicable catalyst for technological purposes.
Artificial neural networks;Catalytic activity;Enthalpy of formation;Environmental catalysis;Rare-earth manganites;
 Cited by
Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite,;;;;;;

The Korean Journal of Chemical Engineering, 2014. vol.31. 8, pp.1405-1412 crossref(new window)
Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite, Korean Journal of Chemical Engineering, 2014, 31, 8, 1405  crossref(new windwow)
Centi G, Ciambelli P, Perathoner S, Russo P. Environmental catalysis: trends and outlook. Catal. Today 2002;75:3-15. crossref(new window)

Pena MA, Fierro JL. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001;101:1981-2018. crossref(new window)

Abordeoaei L, Papp HI. Perovskite utilisation as catalysts in NO reduction by SCR-HC in absence of $O_2$. Environ. Eng. Manag. J. 2004;3:755-760.

Laberty C, Navrotsky A, Rao CN, Alphonse P. Energetics of rare earth manganese perovskites A1-xA'xMn$O_3$ (A=La, Nd, Y and A'=Sr, La) systems. J. Solid State Chem. 1999;145:77-87. crossref(new window)

Uemura S, Mitsudo T, Haruta M, Inui T. Frontiers and tasks of catalysis towards the next century. Proceedings of the International Symposium in honour of Professor Tomoyuki Inui. Utrecht: VSP; 1998.

Isupova LA, Sadykov VA, Solovyova LP, et al. Monolith perovskite catalysts of honeycomb structure for fuel combustion. Stud. Surf. Sci. Catal. 1995;91:637-645. crossref(new window)

Spinicci R, Faticanti M, Marini P, De Rossi S, Porta P. Catalytic activity of $LaMnO_3$ and $LaCoO_3$ perovskites towards VOCs combustion. J. Mol. Catal. A Chem. 2003;197:147-155. crossref(new window)

Chirila LM, Papp H, Suprun W, Balasanian I. Synthesis, characterization and catalytic reduction of $NO_x$ emissions over $LaMnO_3$ perovskite. Environ. Eng. Manag. J. 2007;6:549-553.

Yonghua C, Futai M, Hui L. Catalytic properties of rare earth manganites and related compounds. React. Kinet. Catal. Lett. 1988;37:37-42. crossref(new window)

Liu Y, Dai H, Du Y, et al. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous $LaMnO_3$ with nanovoid skeletons for the combustion of toluene. J. Catal. 2012;287:149-160. crossref(new window)

Li C, Lin Y. Methanol partial oxidation over palladium-, platinum-, and rhodium-integrated $LaMnO_3$ perovskites. Appl. Catal. B 2011;107:284-293. crossref(new window)

Zhang C, Wang C, Zhan W, et al. Catalytic oxidation of vinyl chloride emission over $LaMnO_3$ and $LaB_{0.2}Mn_{0.8}O_3$ (B=Co, Ni, Fe) catalysts. Appl. Catal. B 2013;129:509-516. crossref(new window)

Ran R, Wu X, Quan C, Weng D. Effect of strontium and cerium doping on the structural and catalytic properties of $PrMnO_3$ oxides. Solid State Ion. 2005;176:965-971. crossref(new window)

Tang X, Li Y, Huang X, et al. $MnO_xCeO_2$ mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl. Catal. B 2006;62:265-273. crossref(new window)

Liu J, Zhao Z, Xu C. Research progress in catalysts for removal of soot particulates from diesel engines. Chin. J. Catal. 2004;25:673-680.

Raj SL, Srinivasan V. Decomposition of nitrous oxide on rare earth manganites. J. Catal. 1980;65:121-126. crossref(new window)

Lombardo EA, Ulla MA. Perovskite oxides in catalysis: past, present and future. Res. Chem. Intermed. 1998;24:581-592. crossref(new window)

Arai H, Yamada T, Eguchi K, Seiyama T. Catalytic combustion of methane over various perovskite-type oxides. Appl. Catal. 1986;26:265-276. crossref(new window)

Lintz HG, Wittstock K. Catalytic combustion of solvent containing air on base metal catalysts. Catal. Today 1996;29:457-461. crossref(new window)

Luna AJ, Rojas LOA, Melo DMA, Benachour M, Sousa JF. Total catalytic wet oxidation of phenol and its chlorinated derivates with $MnO_2$/$CeO_2$ catalyst in a slurry reactor. Braz. J. Chem. Eng. 2009;26:493-502. crossref(new window)

Zhou G, Shah PR, Gorte RJ. A study of cerium-manganese mixed oxides for oxidation catalysis. Catal. Lett. 2008;120:191-197. crossref(new window)

Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011;3:546-550. crossref(new window)

Rezlescu N, Rezlescu E, Doroftei C, Popa PD, Ignat M. Nanostructured lanthanum manganite perovskites in catalyst applications. Dig. J. Nanomater. Biostruct. 2013;8:581-587.

Arakawa T, Yoshida A, Shiokawa J. The catalytic activity of rare earth manganites. Mater. Res. Bull. 1980;15:269-273. crossref(new window)

Yamazoe N, Teraoka Y. Oxidation catalysis of perovskites: relationships to bulk structure and composition (valency, defect, etc.). Catal. Today 1990;8:175-199. crossref(new window)

Voorhoeve RJ, Johnson DW Jr, Remeika JP, Gallagher PK. Perovskite oxides: materials science in catalysis. Science 1977;195:827-833. crossref(new window)

Kalashnikova AM, Pisarev RV. Electronic structure of hexagonal rare-earth manganites $RMnO_3$. J. Exp. Theor. Phys. Lett. 2003;78:143-147. crossref(new window)

Moro-Oka Y, Morikawa Y, Ozaki A. Regularity in the catalytic properties of metal oxides in hydrocarbon oxidation. J. Catal. 1967;7:23-32. crossref(new window)

Vijh AK, Lenfant P. Significance of heterogeneous catalysis of certain oxidation reactions by oxides in relation to their heats of formation. Can. J. Chem. 1971;49:809-812.

Aronson S. Estimation of the heat of formation of refractory mixed oxides. J. Nucl. Mater. 1982;107:343-346. crossref(new window)

Vonka P, Leitner J. A method for the estimation of the enthalpy of formation of mixed oxides in $Al_2O_3$-$Ln_2O_3$ systems. J. Solid State Chem. 2009;182:744-748. crossref(new window)

Yokokawa H, Kawada T, Dokiya M. Thermodynamic regularities in perovskite and $K_2NiF_4$ compounds. J. Am. Ceram. Soc. 1989;72:152-153. crossref(new window)

Stolen S, Grande T. Chemical thermodynamics of materials: macroscopic and microscopic aspects. Hoboken: John Wiley and Sons; 2004.

Duffy JA, Ingram MD. Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Ceram. Soc. 1971;93:6448-6454.

Smith W. An acidity scale for binary oxides. J. Chem. Educ. 1987;64:480-481. crossref(new window)

Portier J, Poizot P, Campet G, Subramanian MA, Tarascon JM. Acid-base behavior of oxides and their electronic structure. Solid State Sci. 2003;5:695-699. crossref(new window)

Baerns M, Holena M. Combinatorial development of solid catalytic materials: design of high-throughput experiments, data analysis, data mining. London: Imperial College Press; 2009.

Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: a tutorial. IEEE Computer 1996;29:31-44.

Buhmann MD. Radial basis functions: theory and implementations. New York: Cambridge University Press; 2003.

Hassoun MH. Fundamentals of artificial neural networks. Cambridge: MIT Press; 1995.

Sridhar DV, Seagrave RC, Bartlett EB. Process modeling using stacked neural networks. AlChE J. 1996;42:2529-2539. crossref(new window)

Tompos A, Margitfalvi JL, Tfirst E, Vegvari L. Information mining using artificial neural networks and "holographic research strategy". Appl. Catal. A 2003;254:161-168. crossref(new window)

Burden FR. Mapping analytic functions using neural networks. J. Chem. Inf. Comput. Sci. 1994;34:1229-1231. crossref(new window)

Sha W, Edwards KL. The use of artificial neural networks in materials science based research. Mater. Des. 2007;28:1747-1752. crossref(new window)

Dash S, Singh Z, Parida SC, Venugopal V. Thermodynamic studies on $Rb_2ThO_3$(s). J. Alloys Compd. 2005;398:219-227. crossref(new window)

Diaconescu R, Dumitriu E. Applications of artificial neural networks in environmental catalysis. Environ. Eng. Manag. J. 2005;4:473-498.

Rothenberg G. Data mining in catalysis: separating knowledge from garbage. Catal. Today 2008;137:2-10. crossref(new window)

Hecht-Nielsen R. Replicator neural networks for universal optimal source coding. Science 1995;269:1860-1863. crossref(new window)

Sontag ED. Feed forward nets for interpolation and classification. J. Comput. Sys. Sci. 1992;45:20-48. crossref(new window)

Morss LR, Konings RJM. Thermochemistry of binary rare earth oxides. Dordrecht: Kluwer Academic Publishers, 2006.

Available from: