Advanced SearchSearch Tips
Simultaneous Removal of Gas and Dust by Activated Carbon Coated Electrode
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 18, Issue 4,  2013, pp.229-234
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2013.18.4.229
 Title & Authors
Simultaneous Removal of Gas and Dust by Activated Carbon Coated Electrode
Kim, Kwang Soo; Park, Jung O; Lee, Ju Haeng; Jun, Tae Hwan; Kim, Ilho;
  PDF(new window)
This study aimed to develop a new dust collecting system equipped with an activated carbon (A.C.) coated electrode. Before fabrication, pre-treatment of A.C. was performed to remove metal ions within the A.C. to enlarge its specific surface area. Then, pre-treated A.C., black carbon, polyvinyl acetate (PVAc), and methanol were mixed to make a gel compound, which was coated onto aluminum plates to fabricate electrodes. The optimal mixing ratio of A.C., black carbon, PVAc, and methanol was found to be 10 g: 2 g: 3 g: 20 mL. After fabrication, the electrodes were used in the batch-type experiment for and removal. The reduction rates of the gases were high at the beginning and slowly reduced with time. Dust collection experiments were conducted in continuous flow, with various voltages applied. Compared to 5 kV, dust removal efficiency was 1.5 times higher when 10 kV was applied. Increasing the number of electrodes applied also increased the collecting efficiency. The correlation coefficient between actual collecting efficiency and trend line was higher than 99%. Consequently, the novel dust collection system equipped with A.C. coated electrode appears to be a promising substitute for existing dust-control devices.
Activated carbon coated electrode;Dust collecting;Electrostatic precipitator;Gravity precipitator;
 Cited by
A novel desulfurization practice based on diesel acidification prior to activated carbon adsorption,;;

The Korean Journal of Chemical Engineering, 2015. vol.32. 4, pp.685-693 crossref(new window)
Activated Carbon-Coated Electrode and Insulating Partition for Improved Dust Removal Performance in Electrostatic Precipitators, Water, Air, & Soil Pollution, 2015, 226, 11  crossref(new windwow)
A novel desulfurization practice based on diesel acidification prior to activated carbon adsorption, Korean Journal of Chemical Engineering, 2015, 32, 4, 685  crossref(new windwow)
Evaluation of Activated Carbon-Coated Electrode in Electrostatic Precipitator and Its Regeneration for Volatile Organic Compounds Removal, Water, Air, & Soil Pollution, 2017, 228, 3  crossref(new windwow)
Pierson WR, Gertler AW, Bradow RL. Comparison of the SCAQS tunnel study with other on road vehicle emission data. J. Air Waste Manag. Assoc. 1990;40:1495-1504. crossref(new window)

Yamamoto T, Velkoff HR. Electrohydrodynamics in an electrostatic precipitator. J. Fluid Mech. 1981;108:1-18. crossref(new window)

Dixkens J, Fissan H. Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci. Technol. 1999;30:438-453. crossref(new window)

Rehbein N, Cooray V. NOx production in spark and corona discharges. J. Electrostat. 2001;51-52;333-339. crossref(new window)

Bologa A, Paur HR, Seifert H, Wascher T, Woletz K. Novel wet electrostatic precipitator for collection of fine aerosol. J. Electrostat. 2009;67:150-153. crossref(new window)

Kim KM, Hur JW, Jung SI, Kang AS. Electrochemical characteristics of activated carbon/Ppy electrode combined with P(VdF-co-HFP)/PVP for EDLC. Electrochim. Acta 2004;50:863-872. crossref(new window)

Long Z, Yao Q. Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators. J. Aerosol Sci. 2010;41:702-718. crossref(new window)

Liu Y, Hu Z, Xu K, Zheng X, Gao Q. Surface modification and performance of activated carbon electrode material. Acta Physicochim. Sin. 2008;24:1143-1148.

Nadakatti S, Tendulkar M, Kadam M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination 2011;268:182-188. crossref(new window)

Kim K, Park J. Dust and gaseous pollutants removal by aluminium plate coated with activated carbon in electrostatic precipitator. Proceedings of the 4th International Symposium & IUAPPA Regional Conference; 2012 Sep 10-13; Istanbul, Turkey. p. 56.