Advanced SearchSearch Tips
Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 18, Issue 4,  2013, pp.277-281
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2013.18.4.277
 Title & Authors
Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell
Eaktasang, Numfon; Kang, Christina S.; Ryu, Song Jung; Suma, Yanasinee; Kim, Han S.;
  PDF(new window)
A dual-chamber microbial fuel cell (MFC) inoculated with Desulfovibrio desulfuricans and supplemented with lactate as an organic fuel was employed in this study. Biofilm formed on the anodic electrode was examined by scanning electron microscopy, revealing that the amount of biofilm was increased with repeated cycles of MFC operation. The maximum current production was notably increased from the first cycle () to the final cycle () of MFC run. Coulombic efficiency was also increased from to . We suggest that the current production efficiency was related to the biomass of biofilm formed on the electrode, which was also increased as the MFC run was repeated. It was also found that D. desulfuricans, which colonized on the electrode, produced filaments or nano-pili. Nano-pili were effective for the attachment of cells on the electrode. In addition, the nano-pili provided a cell-to-cell link and stimulated the development of thicker electroactive biofilm, and therefore, they facilitated electron transfer to the anode. Conclusively, the biofilm of D. desulfuricans enhanced the current production in the MFC as a result of effective attachment of cells and electron transfer from the cell network to the electrode.
Current production;Desulfovibrio desulfuricans;Electroactive biofilm;Microbial fuel cells;Nano-pili;Sulfate-reducing bacteria;
 Cited by
Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications, Renewable and Sustainable Energy Reviews, 2016, 56, 1322  crossref(new windwow)
Allen RM, Bennetto HP. Microbial fuel-cells: electricity production from carbohydrates. Appl. Biochem. Biotechnol. 1993;39-40:27-40. crossref(new window)

Kim IS, Chae KJ, Choi MJ, Verstraete W. Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ. Eng. Res. 2008;13:51-68. crossref(new window)

Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14:512-518. crossref(new window)

Song YC, Kim MK, Yi JS. Influence of sulfate as an electron acceptor on the anaerobic hydrolysis and acidogenesis of particulate organics. Environ. Eng. Res. 2003;8:116-121. crossref(new window)

Rabaey K, Van de Sompel K, Maignien L, et al. Microbial fuel cells for sulfide removal. Environ. Sci. Technol. 2006;40:5218-5224. crossref(new window)

Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003;69:1548-1555. crossref(new window)

Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature 1996;382:445-448. crossref(new window)

Newman DK, Kolter R. A role for excreted quinones in extracellular electron transfer. Nature 2000;405:94-97. crossref(new window)

Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature 2005;435:1098-1101. crossref(new window)

Gorby YA, Yanina S, McLean JS, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U. S. A. 2006;103:11358-11363. crossref(new window)

El-Naggar MY, Gorby YA, Xia W, Nealson KH. The molecular density of states in bacterial nanowires. Biophys. J. 2008;95:L10-L12. crossref(new window)

Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003;21:1229-1232. crossref(new window)

Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 2004;6:596-604. crossref(new window)

Zhao F, Rahunen N, Varcoe JR, et al. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosens. Bioelectron. 2009;24:1931-1936. crossref(new window)

Tang X, Guo K, Li H, Du Z, Tian J. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol. 2011;102:3558-3560. crossref(new window)

Chae KJ, Choi M, Ajayi F, Park W, Chang IS, Kim IS. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels 2008;22:169-176. crossref(new window)

Zhang T, Fang HH. Phylogenetic diversity of a SRB-rich marine biofilm. Appl. Microbiol. Biotechnol. 2001;57:437-440. crossref(new window)

Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 2005;7:1405-1410. crossref(new window)

Eaton AD, Clesceri LS, Rice EW, Greenberg AE. Standard methods for examination of water and wastewater. 21st ed. Washington: American Public Health Association; 2005.

Zhang B, Zhao H, Shi C, Zhou S, Ni J. Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. J. Chem. Technol. Biotechnol. 2009;84:1780-1786. crossref(new window)

Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 2008;24:4376-4379. crossref(new window)

Liu Y, Harnisch F, Fricke K, Sietmann R, Schroder U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens. Bioelectron. 2008;24:1006-1011. crossref(new window)

Jadhav GS, Ghangrekar MM. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 2009;100:717-723. crossref(new window)

Nam JY, Kim HW, Lim KH, Shin HS. Electricity generation from MFCs using differently grown anode-attached bacteria. Environ. Eng. Res. 2010;15:71-78. crossref(new window)