Advanced SearchSearch Tips
Biomass and oil content of microalgae under mixotrophic conditions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 20, Issue 1,  2015, pp.25-32
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2014.043
 Title & Authors
Biomass and oil content of microalgae under mixotrophic conditions
Choi, Hee-Jeong; Lee, Seung-Mok;
  PDF(new window)
The growth of the algae strains Neochloris oleabundans, Botryococcus Braunii and Dunaliella sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algal strains was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and are promising resources for biofuel production.
Biomass;Glycerol;Microalgae;Mixotrophic;Oil content;
 Cited by
Strain variation in microalgal lipid production during mixotrophic growth with glycerol, Bioresource Technology, 2016, 204, 80  crossref(new windwow)
Pulz O, Grass W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004;65:635-648. crossref(new window)

Borowitzka MA, Moheimani NR. Sustainable biofuels from algae. Mitig. Adapt. Strateg. Glob. Chang. 2013;18:13-25. crossref(new window)

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87-96. crossref(new window)

Rudolfi L, Chini Zittelli G, Bassin N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009;102:100-112. crossref(new window)

Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006;126:499-507. crossref(new window)

Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011;102:17-25. crossref(new window)

Chen GQ, Chen F. Growing phototrophic cells without light. Biotechnol. Lett. 2006;28:607-616. crossref(new window)

Qiao H, Wang G, Zhang X. Isolation and characterization of Chlorella sorokiniana GXNN01(Chlorophyta) with the properties of heterotrophic and microaerobic growth. J. Phycol. 2009;45:1153-1162. crossref(new window)

Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 2000;6:87-102. crossref(new window)

Zhang H, Wang W, Li Y, Yang W, Shen G. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy. 2011;35: 1710-1715. crossref(new window)

Alkhamis Y, Qin JG. Cultivation of isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. BioMed Res. Int. 2013;2013:983465.

Chojnacka K, Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb. Technol. 2004;34:461-465. crossref(new window)

Bouarab L, Dauta A, Loudiki M. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Water Res. 2004;38:2706-2712. crossref(new window)

Thompson JC, He BB. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 2006;22:261-265. crossref(new window)

Johnson DT, Taconi KA. The glycerol glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 2007;26:338-348. crossref(new window)

Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol- a byproduct of biodiesel production. Biotechnol. Biofuels. 2002;5:1-10.

Chi Z, Pyle D, Wen Z, Frear C, Chen S. A laboratory study of producing docosahexaenoic acid from biodiesel-water glycerol by microalgal fermentation. Process Biochem. 2007;42: 1537-1545. crossref(new window)

Pyle DJ, Garcia RA, Wen Z. Producitng docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 2008;56:3933-3939. crossref(new window)

Choi HJ, Lee JM, Lee SM. A novel optical panel photobioreactor for cultivation of microalgae. Water Sci. Technol. 2013;67:2543-2548. crossref(new window)

Mitra D, van Leenwen J, Lamsal B. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 2012;1:40-48. crossref(new window)

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911-917. crossref(new window)

Sobczuk TM, Chisti Y. Potential fuel oils from the microalga Choricystis minor. J. Chem. Technol. Biotechnol. 2010;85: 100-108. crossref(new window)

Stehfest K, Toepel J, Wilhelm C. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol. Biochem. 2005;43:717-726. crossref(new window)

Andruleviciute V, Makareviciene V, Skorupskaite V, Gumbyte M. Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J. Appl. Phycol. 2014;26:83-90. crossref(new window)

Ceron Garcia MC, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Garcia Camacho F. Mixotrophic growth of Phaeodactrylum tricornutum on glycerol: growth rate and fatty acid profile. J. Appl. Phycol. 2000;12:239-248. crossref(new window)

Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009;31:1043-1049. crossref(new window)

Liang Y, Sarkany N, Cui Y, Blackburn JM. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour. Technol. 2010;101:6745-6750. crossref(new window)

Perez-Garcia O, de-Bashan LE, Hernandez JP, Bashan Y. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J. Phycol. 2010;46:800-812. crossref(new window)

Chen YH, Walker TH. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel- derived crude glycerol. Biotechnol. Lett. 2011;33:1973-1983. crossref(new window)

Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009;100:261-268. crossref(new window)

Kong WB, Yang H, Cao YT, Song H, Hua SF, Xia CG. Effects of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic cultures. Food Technol. Biotechnol. 2013;51:62-69.