JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Cadmium removal by Anabaena doliolum Ind1 isolated from a coal mining area in Meghalaya, India: associated structural and physiological alterations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 20, Issue 1,  2015, pp.41-50
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2014.059
 Title & Authors
Cadmium removal by Anabaena doliolum Ind1 isolated from a coal mining area in Meghalaya, India: associated structural and physiological alterations
Goswami, Smita; Syiem, Mayashree B.; Pakshirajan, Kannan;
  PDF(new window)
 Abstract
The cyanobacterium Anabaena doliolum Ind1 isolated from a coal mining site was tested for removal of cadmium at optimum pH 7.0 and temperature . The organism recorded high percentage of metal removal (92-69%) within seven days of exposure to 0.5-2.0 ppm cadmium. Biosorption onto the cell surface was the primary mode of metal removal. Fourier transform infrared spectroscopy (FTIR) established hydroxyl, amides, carboxyl, sulphate and carbonyl groups to be the major functional groups on the cell surface involved in cadmium binding. Cellular ultrastructure and a range of vital physiological processes (i.e., photosynthetic pigments, respiration, photosynthesis, heterocyst frequency and nitrogenase activity) remained unaffected upon 0.5 ppm treatment; higher concentrations of cadmium exerted visible adverse effects. Amongst the five photosynthetic pigments tested, phycocyanin was the most targeted pigment (inhibition was 15-89%). Both respiration and photosynthetic activities were inhibited by cadmium with more severe effect seen on respiration. 2.0 ppm cadmium exposure also had drastic negative effect on nitrogenase activity (87% decreased).
 Keywords
Anabaena doliolum Ind1;Biosorption;Cadmium;Coal mining site;Cyanobacterium;
 Language
English
 Cited by
 References
1.
Dietary Reference Intakes (DRI) reports. National Academy of Sciences, 2001.

2.
Gupta VK, Rastogi A. Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp. - a comparative study. Colloids. Surf. B Biointerfaces 2008;64:170-178. crossref(new window)

3.
Trevors JT, Stratton GW, Gadd GM. Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can. J. Microbiol. 1986;32:447-464. crossref(new window)

4.
Vymazal J. Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: A review. Toxic. Assess. 1987;2:387-415.

5.
Couillard Y, Campbell PGC, Tessier A. Response of metallothionein concentrations in a freshwater bivalve (Anodontagrandis) along an environmental cadmium gradient. Limnol. Oceanogr. 1993;38:299-313. crossref(new window)

6.
Akthar NM, Mohan PM. Bioremediation of toxic metal ions from polluted lake waters and industrial effluents by fungal biosorbent. Curr. Sci. 1995;69:1028-1030.

7.
Babu BV, Gupta S. Adsorption of Cr(VI) using activated neem leaves as an adsorbent: kinetic studies. Adsorption 2008;14:85-92. crossref(new window)

8.
Zirino A, Yamamoto S. A pH-dependent model for the chemical speciation of copper, zinc, cadmium and lead in seawater. Limnol. Oceanogr. 1972;17:661-671. crossref(new window)

9.
Crist RH, Oberholser K, Shank N, Nguyen M. Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Technol. 1981;15:1212-1217. crossref(new window)

10.
Atri N, Rai LC. Differential responses of three cyanobacteria to UV-B and Cd. J. Microbiol. Technol. 2003;13:544-551.

11.
Heng L, Jusoh YK, Ling CHM, Idris M. Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae. Bull. Environ. Contam. Toxicol. 2004;72: 373-379. crossref(new window)

12.
Surosz W, Palinska KA. Effect of heavy metal stress on cyanobacterium Anabaena flos-aquae. Arch. Environ. Contam. Toxicol. 2004;48:40-48. crossref(new window)

13.
Wong PTS, Burnison G, Chau YK. Cadmium toxicity to freshwater algae. Bull. Environ. Contam. Toxicol. 1979;23:487-490. crossref(new window)

14.
Rachlin JW, Jensen TE, Warkentine B. The toxicological response of the alga Anabaena cylindrica to cadmium. Arch. Environ. Contam. Toxicol. 1984;13:143-151. crossref(new window)

15.
Raizada M, Rai LC. Metal-induced inhibition of growth, heterocyst differentiation, carbon fixation and nitrogenase activity of Nostoc muscorum: Interaction with EDTA and calcium. Microbios Lett. 1985;30:153-161.

16.
Rai LC, Tyagi B, Mallick N, Rai PK. Interactive effect of UV-B and copper on photosynthetic activity of the cyanobacterium Anabaena doliolum. Environ. exp. Bot.1995;35:177-185. crossref(new window)

17.
Rai LC, Tyagi B, Rai PK, Mallick N. Interactive effects of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of N2 fixing cyanobacterium Anabaena doliolum. Environ. exp. Bot. 1998;39:221-231. crossref(new window)

18.
Arunakumara KKIU, Xuecheng Z. Effects of heavy metals ($Pb^{2+}$ and $Cd^{2+}$) on the ultrastructure, growth and pigment contents of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Chin. J. Oceanol. Limnol. 2009;27:383-388. crossref(new window)

19.
Latifi A, Ruiz M, Zhang CC. Oxidative stress in cyanobacteria. FEMS. Microbiol. Rev. 2009;33:258-278. crossref(new window)

20.
Deniz F, Saygideger SD, Karaman S. Response to Copper and Sodium Chloride Excess in Spirulina sp.(Cyanobacteria). Bull. Environ. Contam. Toxicol. 2011;87:11-15. crossref(new window)

21.
Nongrum, NA, Syiem MB. Effects of Copper ion ($Cu^{2+}$) on the physiological and biochemical activities of the cyanobacterium Nostoc ANTH. Environ. Eng. Res. 2012;17:S63-S67.

22.
Bakiyaraj R. Effect of Heavy Metal Copper on the Marine Cyanobacterium Phormidium tenue Mengh Gomont. Int. J. Pharm. Biol. Arch. 2014;4.

23.
Singh MPVV, Prasad SM, Singh M. Cadmium and high irradiance induced oxidative stress defense system in cyanobacterium Nostoc muscorum. Asian. J. Exp. Biol. 2013;4: 545-554.

24.
Fathi AA. Toxicological response of the green alga Scenedesmus bijuga to mercury and lead. Folia Microbiol. 2002;47:667-671. crossref(new window)

25.
Castenholz RW. Ecology of blue-green algae in hot springs. In: Carr NG, Whitton BA, eds. The Biology of Blue-Green Algae. Oxford: Blackwell Scientific Publications; 1973. p. 379-414.

26.
Humm HJ, Wicks SR. Introduction and Guide to the Marine Bluegreen Algae. New York: John Wiley & Sons; 1980. p.194.

27.
Reed RH, Chudek JA, Foster R, Stewart WDP. Osmotic adjustment in cyanobacteria from hypersaline environments. Arch. Microbiol. 1984;138:333-337. crossref(new window)

28.
Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ. Trichodesmium, a globally significant marine cyanobacterium. Science 1997;276:1221-1229. crossref(new window)

29.
Vermaas WFJ. Photosynthesis and respiration in cyanobacteria. In: Encyclopedia of life sciences. New York: John Wiley & Sons; 2001.

30.
Prasanna R, Jaiswal P, Singh YV, Singh PK. Influence of biofertilizers and organic amendments on nitrogenase activity and phototrophic biomass of soil under wheat. Acta Agronomica Hungarica 2008;56:149-159. crossref(new window)

31.
De Philippis R, Paperi R, Sili C, Vincenzini M. Assessment of the metal removal capability of the two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J. Appl. Phycol. 2003. 15: 155-161. crossref(new window)

32.
Subramanian G, Uma L. Cyanobacteria in pollution control. J. Sci. Ind. Res. 1996;55:685-692.

33.
Cervantes C, Campos-Garcia J, Devars S, et al. Interactions of chromium with microorganisms and plants. FEMS. Microbiol. Rev. 2001;25:335-347. crossref(new window)

34.
Zakaria MA. Removal of cadmium and manganese by a non-toxic strain of the fresh water cyanobacterium, Gloeothece magna. Water Res. 2001;35:4405-4409. crossref(new window)

35.
Anjana K, Kaushik A, Kiran B, Nisha R. Biosorption of Cr (VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J. Hazard. Mater. 2007;148:383-386. crossref(new window)

36.
Cain A, Vannela R, Woo LK. Cyanobacteria as a biosorbent for mercuric ion. Bioresour. Technol. 2008;99:6578-6586. crossref(new window)

37.
Micheletti E, Pereira S, Mannelli F, Moradas-Ferreira P, Tamagnini P, De Philippis R. sheathless mutant of cyanobacterium Gloeothecesp. strain PCC 6909 with increased capacity to remove copper ions from aqueous solutions. Appl. Environ. Microbiol. 2008;74:2797-2804. crossref(new window)

38.
Pereira S, Micheletti E, Zille A, et al. Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology 2011;157:451-458. crossref(new window)

39.
Shukla D, Vankar PS, Srivastava SK. Bioremediation of hexavalent chromium by a cyanobacterial mat. Appl. Water. Sci. 2012;2:245-251.

40.
Dixit S, Singh DP. Phycoremediation of lead and cadmium by employing Nostocmuscorum as biosorbent and optimization of its biosorption potential. Int. J. Phytoremediation 2013;15: 801-813. crossref(new window)

41.
Cho DY, Lee ST, Park SW, Chung AS. Studies on biosorption of heavy metals onto Chlorella vulgaris. J. Environ. Sci. Health. A. 1994;29:389-409.

42.
Gupta VK, Rastogi A, Saini VK, Jain N. Biosorption of copper (II) from aqueous solutions by Spirogyra species. J. Colloid Interface Sci. 2006;296:59-63. crossref(new window)

43.
Raungsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harveya NW. Removal of lead ($Pb^{2+}$) by the cyanobacterium Gloeocapsa sp. Bioresour. Technol. 2008;99:5650-5658. crossref(new window)

44.
Chakraborty N, Banerjee A, Pal R. Biomonitoring of lead, cadmium and chromium in environmental water from Kolkata, North and South-24 Parganas using algae as bioreagent. J. Algal. Biomass Utln. 2011;2:27-41.

45.
Chojnacka K, Chojnacki A, Gorecka H. Biosorption of $Cr^{3+}$, $Cd^{2+}$ and $Cu^{2+}$ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 2005;59:75-84. crossref(new window)

46.
Terry PA, Stone W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 2002;47:249-255. crossref(new window)

47.
Doshi H, Seth C, Ray A, Kothari IL. Bioaccumulation of heavy metals by green algae. Curr. Microbiol. 2008;56:246-255. crossref(new window)

48.
Ripkka R, Dereulles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979;111:1-61. crossref(new window)

49.
Colowick SP, Kaplan NO, Packer L, Glazer AN. San Diego, California: Academic Press; 1988.

50.
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Agarose gel electrophoresis. Short protocols in molecular biology. 2nd ed. New York: John Wiley & Sons;1999.

51.
Nubel U, Garcia-Pichel F, Muyzer G. PCR Primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997;63:3327-3332.

52.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol. Biol. Evol. 2011;28:2731-2739. crossref(new window)

53.
Langmuir I. Adsorption of gases on plain surface of glass mica platinum. J. Am. Chem. Soc. 1918;40:1361-1403. crossref(new window)

54.
Mackinney G. Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941;140:315-322.

55.
Morgan RC. The carotenoids of Queensland fruits. Carotenes of the watermelon (Citrullus vulgaris). J. Food Sci. 1967;32:275-278. crossref(new window)

56.
Bennett A, Bogorad L. Complementary chromatic adaptation in filamentous blue green algae. J. Cell Biol. 1973;58:419-435. crossref(new window)

57.
Robinson SJ, Deroo CS, Yocum CF. Photosynthetic electron transfer in preparation of the cyanobacterium Spirulina platensis. Plant Physiol. 1982;70:154-161. crossref(new window)

58.
Wolk CP. Control of sporulation in a blue-green alga. Dev. Biol. 1965;12:15-35. crossref(new window)

59.
Stewart WDP, Fitzgerald GP, Burris RH. In situ studies on nitrogen fixation using acetylene reduction technique. Proc. Natl. Acad. Sci. U.S.A. 1967;58:2071-2078. crossref(new window)

60.
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4: 406-425.

61.
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783-791. crossref(new window)

62.
Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111-120. crossref(new window)

63.
Kaewsarn P. Cadmium biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere 2002;47:1081-1085. crossref(new window)

64.
Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater. 2008;152:407-414. crossref(new window)

65.
Amini M, Younesi H, Bahramifar N, et al. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J. Hazard. Mater. 2008;154:694-702. crossref(new window)

66.
Manju GN, Raji C, Anirudhan TS. Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res. 1998;32:3062-3070. crossref(new window)

67.
McKay G, Ho YS, Ng JCY. Biosorption of copper from waste water: a review. Separ. Purif. Method. 1999;28:87-125. crossref(new window)

68.
Ho YS. Removal of copper ions from aqueous solution by tree fern. Water Res. 2003;37:2323-2330. crossref(new window)

69.
Horsfall Jnr M, Spiff AI. Effects of temperature on the sorption of $Pb^{2+}$ and $Cd^{2+}$ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron. J. Biotechnol. 2005;8:43-50.

70.
Aksu Z, Kutsal T. A bioseparation process for removing Pb(II) ions from wastewater by using C. vulgaris. J. Chem. Technol. Biotechnol. 1991;52:108-118.

71.
Huang JP, Huang CP, Morehart AL. The removal of Cu(II) from diluted aqueous solution by Saccharomyces cerevisiae. Water Res. 1990;24:433-439. crossref(new window)

72.
Donmez GC, Aksu Z, Ozturk A, Kutsal T. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 1999;4:885-892.

73.
Donmez G, Aksu Z. Removal of Cr(VI) from saline wastewaters by Dunaliella species. Process Biochem. 2002;38:751-762. crossref(new window)

74.
Krheminska H, Fedorovych D, Babyak L, Yanovych D, Kaszycki P, Kolczek H. Chromium(III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium contentin selected strains of representative genera. Process Biochem. 2005;40:1565-1572. crossref(new window)

75.
Shah V, Ray A, Garg N, Madamwar D. Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142 and its exploitation toward metal removal from solutions. Curr. Microbiol. 2000;40: 274-278. crossref(new window)

76.
Wang Y, Ahmed Z, Feng W, Li C,Song S. Physicochemiacal properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int. J.Biol. Macromol. 2008;43:283-288. crossref(new window)

77.
Abdel-Aty AM, Ammar NS, Ghafar HHA, Ali RK. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J. Adv. Res. 2013;4:367-374. crossref(new window)

78.
Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. Comparative Study of Biosorption of heavy metals using different types of algae. Bioresour. Technol. 2007;98:3344-3353. crossref(new window)

79.
Morsy FM, Hassan SHA, Koutb M. Biosorption of Cd (II) and Zn (II) by Nostoc commune: Isotherm and Kinetics Studies. Clean - Soil, Air, Water 2011;39:680-687. crossref(new window)

80.
Fernandez-Pinas F, Mateo P, Bonilla I. Ultrastructural changes induced by selected cadmium concentration in the cyanobacterium Nostoc UAM208. J. Plant. Physiol. 1995;147:452-456. crossref(new window)