JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 20, Issue 1,  2015, pp.89-97
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2014.079
 Title & Authors
Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes
Sailo, Lalsaimawia; Pachuau, Lalramnghaki; Yang, Jae Kyu; Lee, Seung Mok; Tiwari, Diwakar;
  PDF(new window)
 Abstract
Remediation of wastewater contaminated with metal(II)-complexed species (Cu(II)-NTA (NTA: nitrilotriacetic acid), Cu(II)-EDTA (EDTA: ethylenediamine tetraacetic acid) and Cd(II)-EDTA is attempted using the potential applicability of ferrate(VI). Kinetics of pollutant degradation is obtained with the removal of ferrate(VI) studied at wide range of pH (8.0-10.0) and the concentration of metal(II)-complexed species (0.3 to 15.0 mmol/L) employing a constant dose of ferrate(VI) i.e., 1.0 mmol/L. Pseudo-first-order and pseudo-second-order rate constants were obtained in the reduction of ferrate(VI) which was then employed to obtain the overall rate constants of the pollutant degradation. The mineralization of NTA and EDTA was obtained with the change in TOC (total organic carbon) values collected by the ferrate(VI) treated pollutant samples. Decrease in pH and molar pollutant concentrations was greatly favored the percent mineralization of NTA or EDTA by the ferrate(VI) treatment. The treated pollutant samples were filtered and subjected for AAS (atomic absorption spectrophotometric) analysis to assess the simultaneous removal of copper and cadmium from aqueous solutions at the studied pH as well at the elevated pH 12.0. Results show that an enhanced removal of cadmium or copper was achieved at pH 12.0. Overall, ferrate(VI) possesses multifunctional application in wastewater treatment as it oxidizes the degradable impurities and removes metallic impurities by coagulation process.
 Keywords
Coagulation;Ferrate(VI);Kinetics;Metal(II)-complexed species;Mineralization;Oxidation;
 Language
English
 Cited by
1.
Development of On-Site Process for Refractory 2,4-Dichlorophenol Treatment, Journal of the Korea Society For Power System Engineering, 2016, 20, 1, 42  crossref(new windwow)
2.
Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol, Journal of Hazardous Materials, 2016, 319, 130  crossref(new windwow)
 References
1.
Gyliene O, Rekertas R, Salkauskas M. Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musa domestica) larva shells. Water Res. 2002;36:4128-4136. crossref(new window)

2.
Nowack B, Xue H, Sigg L. Influence of natural and anthropogenic ligands on metal transport during infiltration on river water to groundwater. Environ. Sci. Technol. 1997;31:866-872. crossref(new window)

3.
Lan S, Ju F, Wu X. Treatment of wastewater containing EDTA-Cu(II) using the combined process of interior microelectrolysis and fenton oxidation-coagulation. Sep. Purif. Technol. 2012;89:117-124. crossref(new window)

4.
Aydin H, Buluta Y, Yerlikayab E. Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 2008;87:37-45. crossref(new window)

5.
Davis AP, Green DL. Photocatalytic oxidation of cadmium- EDTA with titanium dioxide. Environ. Sci. Technol. 1999;33:609-617. crossref(new window)

6.
Wu P, Zhou J, Wang X, et al. Adsorption of Cu-EDTA complexes from aqueous solutions by polymeric Fe/Zr pillared montmorillonite: behaviors and mechanisms. Desalination 2011;277:288-295. crossref(new window)

7.
Licsko I, Takacs I. Heavy metal removal in the presence of colloid-stabilizing organic material and complexing agents. Water Sci. Technol. 1996;18:19-29.

8.
Jiang S, Qu J, Xiong Y. Removal of chelated copper from wastewaters by $Fe^{2+}$-based replacement-precipitation. Environ. Chem. Lett. 2010;8:339-342. crossref(new window)

9.
Issabayeva G, Aroua MK, Sulaiman NM. Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 2010;262:94-98. crossref(new window)

10.
Sricharoenchaikit P. Ion exchange treatment for elctroless copper- EDTA rinse water. Plat. Surf. Finish 1989;76:68-70.

11.
Borbely G, Nagy E. Removal of zinc and nickel ions by complexation- membrane filtration process from industrial wastewater. Desalination 2009;240:218-226. crossref(new window)

12.
Yeh RS, Wang YY, Wan CC. Removal of Cu-EDTA compounds via electrochemical process with coagulation. Water Res. 1995; 29:597-599. crossref(new window)

13.
Spearot RM, Peck JV. Recovery process for complexed copper- bearing rinse waters. Environ. Prog. 1984;3:124-128. crossref(new window)

14.
Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011;92:407-418. crossref(new window)

15.
Zhen H, Xu Q, Hu Y, Cheng J. Characteristics of heavy metals capturing agent dithiocarbamate (DTC) for treatment of ethylene diamine tetraacetic acid-Cu (EDTA-Cu) contaminated wastewater. Chem. Eng. J. 2012;209:547-557. crossref(new window)

16.
Wu L, Wang H, Lan H, Liu H, Qu J. Adsorption of Cu(II)-EDTA chelates on tri-ammonium-functionalized mesoporous silica from aqueous solution. Sep. Purif. Technol. 2013;117:118-123. crossref(new window)

17.
Yang X, Wang JN, Cheng C. Preparation of new spongy adsorbent for removal of EDTA-Cu(II) and EDTA-Ni(II) from water. Chin. Chem. Lett. 2013;24:383-385. crossref(new window)

18.
Seshadri H, Chitra S, Paramasivan K, Sinha PK. Photocatalytic degradation of liquid waste containing EDTA. Desalination 2008;232:139-144. crossref(new window)

19.
White VE, Knowles CJ. Degradation of copper-NTA by Mesorhizobium sp. NIMB 1352. Int. Biodeterior. Biodegradation 2003;52:143-150. crossref(new window)

20.
Lan J, Zhang S, Lin H, et al. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere 2013;91:1362-1367. crossref(new window)

21.
Lee HB, Peart TE, Kaiser KLE. Determination of nitrolotriacetic, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids in sewage treatment plant and paper mill effluents. J. Chromatogr. A 1996;738:91-99. crossref(new window)

22.
Calapaj R, Ciraolo L, Corigliano F, Di Pasquale S. Dead-stop determination of EDTA and NTA in commercially available detergents. Analyst 1982;107:403-407. crossref(new window)

23.
Li C, Li XZ, Graham N. A study of the preparation and reactivity of potassium ferrate. Chemosphere 2005;61:537-543. crossref(new window)

24.
Lee Y, Cho M, Kim JY, Yoon J. Chemistry of Ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical. J. Ind. Eng. Chem. 2004;10:161-171.

25.
Tiwari D, Yang JK, Lee SM. Applications of ferrate(VI) in the treatment of wastewaters. Environ. Eng. Res. 2005;10:269-282. crossref(new window)

26.
Sharma VK. Potassium ferrate(VI): an environmentally friendly oxidant. Adv. Environ. Res. 2002;6:143-156. crossref(new window)

27.
Jiang JQ, Lloyd B. Progress in the development and use of ferrate(VI) salts as an oxidant and coagulant for water and wastewater treatment. Water Res. 2002;36:1397-1408. crossref(new window)

28.
Jiang JQ. Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazard. Mater. 2007;146:617-623. crossref(new window)

29.
Tiwari D, Lee SM. Ferrate (VI) in the treatment of wastewaters: a new generation green chemical. In: Prof. Fernando Sebastiin Garcia Einschlag ed. Waste Water - Treatment and reutilization. Vukovar: InTech; 2011.

30.
Lee SM, Tiwari D. Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides: a green treatment. J. Environ. Sci. 2009;21:1347-1352. crossref(new window)

31.
Yngard RA, Sharma VK, Filip J, Zboril R. Ferrate(VI) oxidation of weak-acid dissociable cyanides. Environ. Sci. Technol. 2008;42:3005-3010. crossref(new window)

32.
Sharma VK. Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord. Chem. Rev. 2013;257:495-510. crossref(new window)

33.
Sharma VK, Burnett CR, Yngard RA, Cabelli D. Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environ. Sci. Technol. 2005;39:3849-3854. crossref(new window)

34.
Tiwari D, Kim HU, Choi BJ, et al. Ferrate(VI): a green chemical for the oxidation of cyanide in aqueous/waste solutions. J. Environ. Sci. Health A 2007;42:803-810.

35.
Yang JK, Tiwari D, Yu MR, Pachuau L, Lee SM. Application of Fe(VI) in the treatment of Zn(II)-NTA complexes in aqueous solutions. Environ. Technol. 2010;31:791-798. crossref(new window)

36.
Yu MR, Chang YY, Tiwari D, Pachuau L, Lee SM, Yang JK. Treatment of wastewater contaminated with Cd(II)-NTA using Fe(VI). Desalination Water Treat. 2012;50:43-50. crossref(new window)

37.
Yu MR, Kim TH, Chang YY, Yang JK. Application of ferrate in the removal of copper-organic complexes. Sustain. Environ. Res. 2010;20:269-273.

38.
Murshed M, Rockstraw DA, Hanson AT, Jhonson M. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate. Environ. Pollut. 2003;125:245-253. crossref(new window)

39.
Yu MR, Chang YY, Keller AA, Yang JK. Application of ferrate for the treatment of metal-sulfide. J. Environ. Manage. 2013;116:95-100. crossref(new window)

40.
Pachuau L, Lee SM, Tiwari D. Ferrate(VI) in wastewater treatment contaminated with metal(II)-iminodiacetic acid complexed species. Chem. Eng. J. 2013;230:141-148. crossref(new window)

41.
Tiwari D, Sailo L, Pachuau L. Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate(VI). Sep. Purif. Technol. 2014;132:77-83. crossref(new window)

42.
Li C, Li XZ, Graham N, Gao NY. The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res. 2008;42:109-120. crossref(new window)

43.
Zhang P, Zhang G, Dong J, Fan M, Zeng G. Bisphenol A oxidative removal by ferrate (Fe(VI)) under weak acidic condition. Sep. Purif. Technol. 2012;84:46-51. crossref(new window)

44.
Han Z, Chang VW, Wang X, Lim TT, Hildemann L. Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts. Chem. Eng. J. 2013;218:9-18. crossref(new window)

45.
Pachuau L. Ferrate(VI): a green chemical for the treatment of aqueous wastes [dessertation]. Aizawl, India: Mizoram University; 2013.

46.
Nortemann B. Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. ACS Symp. Ser. 2005;910:150-170.

47.
Ohta T, Kamachi T, Shiota Y, Yoshizawa K. A theoretical study of alcohol oxidation of ferrate. J. Org. Chem. 2001;66:4122-4131. crossref(new window)

48.
Sharma VK, O'Connor DB, Cabelli D. Oxidation of thiocyanate by iron(V) in alkaline medium. Inorganica Chim. Acta 2004;357:4587-4591. crossref(new window)

49.
Jiang JQ, Zhou Z, Pahl O. Preliminary study of ciprofloxacin(cip) removal by potassium ferrate (VI). Sep. Purif. Technol. 2012;88: 95-98. crossref(new window)

50.
Sharma VK, Burnett CR, O'Connor DB, Cabelli D. Iron(VI) and iron(V) oxidation of thiocyanate. Environ. Sci. Technol. 2002;36:4182-4186. crossref(new window)

51.
Sharma VK, Yngard RA, Cabelli DE, Baum JC. Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate and copper(I) cyanide. Radiat. Phys. Chem. 2008;77:761-767. crossref(new window)

52.
Lee C, Lee Y, Schmidt C, Yoon J, von Gunten U. Oxidation of suspected N- nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the DMA formation potential of natural waters. Water Res. 2008;42:433-441. crossref(new window)

53.
DeLuca SJ, Chao AC, Smallewood C. Removal of organic priority pollutants by oxidation-coagulation. J. Environ. Eng. 1983;109: 36-46. crossref(new window)