Advanced SearchSearch Tips
Removal of a synthetic broad-spectrum antimicrobial agent, triclosan, in wastewater treatment systems: A short review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 20, Issue 2,  2015, pp.111-120
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2014.081
 Title & Authors
Removal of a synthetic broad-spectrum antimicrobial agent, triclosan, in wastewater treatment systems: A short review
Lee, Do Gyun;
  PDF(new window)
Contaminants of emerging concern (CECs) including endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care product chemicals (PPCPs) have recently received more attention because of their occurrence in water bodies and harmful impacts on human health and aquatic organisms. Triclosan is widely used as a synthetic broad-spectrum antimicrobial agent due to its antimicrobial efficacy. However, triclosan detected in aquatic environment has been recently considered as one of CECs, because of the potential for endocrine disruption, the formation of toxic by-products and the development of cross-resistance to antibiotics in aquatic environment. This comprehensive review focuses on the regulations, toxicology, fate and transport, occurrence and removal efficiency of triclosan. Overall, this review aims to provide better understanding of triclosan and insight into application of biological treatment process as an efficient method for triclosan removal.
Antimicrobial;Contaminants of emerging concern (CECs);Pharmaceuticals and personal care product chemicals (PPCPs);Removal;Triclosan;Wastewater;
 Cited by
Photodegradation of 17α-ethynylestradiol in nitrate aqueous solutions,;;;;;;

Environmental Engineering Research, 2016. vol.21. 2, pp.188-195 crossref(new window)
Photodegradation of 17α-ethynylestradiol in nitrate aqueous solutions, Environmental Engineering Research, 2016, 21, 2, 188  crossref(new windwow)
Morrall D, McAvoy D, Schatowitz B, et al. A field study of triclosan loss rates in river water (Cibolo Creek, TX). Chemosphere 2004;54:653-660. crossref(new window)

Nakada N, Yasojima M, Okayasu Y, Komori K, Suzuki Y. Mass balance analysis of triclosan, diethyltoluamide, crotamiton and carbamazepine in sewage treatment plants. Water Sci. Technol. 2010;61:1739-1747. crossref(new window)

Kolpin DW, Furlong ET, Meyer MT, et al. Response to comment on "Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance". Environ. Sci. Technol. 2002;36:4004. crossref(new window)

Kinney CA, Furlong ET, Kolpin DW, et al. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ. Sci. Technol. 2008;42:1863-1870. crossref(new window)

Queckenberg C, Meins J, Wachall B, et al. Absorption, pharmacokinetics, and safety of triclosan after dermal administration. Antimicrob. Agents Chemother. 2010;54:570-572. crossref(new window)

Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J. Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. Health A 2006;69:1861-1873. crossref(new window)

Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 2002;46:1485-1489. crossref(new window)

Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 2006;372:87-93. crossref(new window)

Dayan AD. Risk assessment of triclosan [Irgasan] in human breast milk. Food Chem. Toxicol. 2007;45:125-129. crossref(new window)

Singer H, Mueller S, Tixier C, Pillonel L. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 2002;36: 4998-5004. crossref(new window)

Yazdankhah SP, Scheie AA, Hoiby EA, et al. Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Resist. 2006;12:83-90. crossref(new window)

Schweizer HP. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 2001;202:1-7. crossref(new window)

Halden RU, Paull DH. Co-occurrence of triclocarban and triclosan in US water resources. Environ. Sci. Technol. 2005;39: 1420-1426. crossref(new window)

Latch DE, Packer JL, Arnold WA, McNeill K. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J. Photochem. Photobiol. A Chem. 2003;158: 63-66. crossref(new window)

Braoudaki M, Hilton AC. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E.coli O157. FEMS Microbiol. Lett. 2004;235: 305-309. crossref(new window)

Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K. Effects of triclosan on varios aquatic organisms. Environ. Sci.: Int. J. Environ. Physiol. Toxicol. 2004;11:133-140.

Gee RH, Charles A, Taylor N, Darbre PD. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J. Appl. Toxicol. 2008;28:78-91. crossref(new window)

Foran CM, Bennett ER, Benson WH. Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar. Environ. Res. 2000;50:153-156. crossref(new window)

Ishibashi H, Tachibana K, Tsuchimoto M, et al. Effects of nonylphenol and phytoestrogen-enriched diet on plasma vitellogenin, steroid hormone, hepatic cytochrome P450 1A, and glutathione-S-transferase values in goldfish (Carassius auratus). Comparative Med. 2004;54:54-62.

Jiang J, Pang SY, Ma J. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides. Environ. Sci. Technol. 2009;43:8326-8331. crossref(new window)

Liyanapatirana C, Gwaltney SR, Xia K. Transformation of triclosan by Fe(III)-saturated montmorillonite. Environ. Sci. Technol. 2010;44:668-674. crossref(new window)

Rafqah S, Wong-Wah-Chung P, Nelieu S, Einhorn J, Sarakha M. Phototransformation of triclosan in the presence of $TiO_2$ in aqueous suspension: Mechanistic approach. Appl. Catal. B Environ. 2006;66:119-125. crossref(new window)

Suarez S, Dodd MC, Omil F, von Gunten U. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. Water Res. 2007;41:2481-2490. crossref(new window)

Zhang HC, Huang CH. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ. Sci. Technol. 2003;37:2421-2430. crossref(new window)

Bokare V, Murugesan K, Kim YM, Jeon JR, Kim EJ, Chang YS. Degradation of triclosan by an integrated nano-bio redox process. Bioresour. Technol. 2010;101:6354-6360. crossref(new window)

Sanchez-Prado L, Llompart M, Lores M, Garcia-Jares C, Bayona JM, Cela R. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Chemosphere 2006;65:1338-1347. crossref(new window)

Tixier C, Singer HP, Canonica S, Muller SR. Phototransformation of triclosan in surface waters: a relevant elimination process for this widely used biocide - laboratory studies, field measurements, and modeling. Environ. Sci. Technol. 2002;36:3482-3489. crossref(new window)

Behera SK, Oh SY, Park HS. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. J. Hazard Mater. 2010;179:684-691. crossref(new window)

Hay AG, Dees PM, Sayler GS. Growth of a bacterial consortium on triclosan. FEMS Microbiol. Lett. 2001;36:105-112. crossref(new window)

Stasinakis AS, Kordoutis CI, Tsiouma VC, Gatidou G, Thomaidis NS. Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresour. Technol. 2010; 101:2090-2095. crossref(new window)

Meade MJ, Waddell RL, Callahan TM. Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol. Lett. 2001;204:45-48. crossref(new window)

Roh H, Subramanya N, Zhao F, Yu CP, Sandt J, Chu KH. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 2009;77:1084-1089. crossref(new window)

Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F. Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 2000;66:4157-4160. crossref(new window)

Kim YM, Murugesan K, Schmidt S, et al. Triclosan susceptibility and co-metabolism - a comparison for three aerobic pollutant-degrading bacteria. Bioresour. Technol. 2011;102:2206-2212. crossref(new window)

Lee DG, Zhao F, Rezenom YH, Russell DH, Chu KH. Biodegradation of triclosan by a wastewater microorganism. Water Res. 2012;46:4226-4234. crossref(new window)

Lee DG, Chu KH. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. Chemosphere 2013;93:1904-1911. crossref(new window)

Kroon AGM, van Ginkel CG. Complete mineralization of dodecyldimethylamine using a two-membered bacterial culture. Environ. Microbiol. 2001;3:131-136. crossref(new window)

Bhargava HN, Leonard PA. Triclosan: applications and safety. Am. J. Infect. Control 1996;24:209-218. crossref(new window)

Veldhoen N, Skirrow RC, Osachoff H, et al. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat. Toxicol. 2006;80:217-227. crossref(new window)

Crofton KM, Paul KB, DeVito MJ, Hedge JM. Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ. Toxicol. Pharmacol. 2007;24:194-197. crossref(new window)

Allmyr M, Harden F, Toms LML, et al. The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci. Total Environ. 2008;393:162-167. crossref(new window)

Winter RA. Consumer's dictionary of cosmetic ingredients. 4th ed. New York: Crown Trade Paperbacks; 1994.

Fuerhacker M, Haile TD. Treatment and reuse of sludge. In: Barcelo D, Petrovic M, Afferden M, eds. waste water treatement and reuse in the Mediterranean region. The Handbook Environ. Chem. Springer-Verlag Berlin Heidelberg; 2011(14). p. 63-92.

Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM. Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit. Rev. Toxicol. 2010;40:422-484. crossref(new window)

Kanetoshi A, Katsura E, Ogawa H, Ohyama T, Kaneshima H, Miura T. Acute toxicity, percutaneous-absortion and effects on hepatic mixed-function oxidase activities of 2,4,4'-trichloro-2'-hydroxydiphenyl ether (Irgasan DP300) and its chlorinated derivatives. Arch. Environ. Contam. Toxicol. 1992;23:91-98.

DR Orvos, Versteeg DJ, Inauen J, et al. Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 2002;21:1338-1349. crossref(new window)

Ishibashi H, Matsumura N, Hirano M, et al. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 2004;67:167-179. crossref(new window)

Dussault EB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK. Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ. Toxicol. Chem. 2008;27: 425-432. crossref(new window)

Capdevielle M, Egmond RV, Whelan M, et al. Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr. Environ. Assess. Manag. 2008;4:15-23. crossref(new window)

Ricart M, Guasch H, Alberch M, et al. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat. Toxicol. 2010;100:346-353. crossref(new window)

Oliveira R, Domingues I, Grisolia CK, Soares A. Effects of triclosan on zebrafish early-life stages and adults. Environ. Sci. Pollut. Res. 2009;16:679-688. crossref(new window)

Nassef M, Matsumoto S, Seki M, et al. Pharmaceuticals and ersonal care products toxicity to Japanese medaka fish (Oryzias latipes). J. Fac. Agric. Kyushu U. 2009;54:407-411.

Norris DO, Carr JA. Endocrine disruption: biological basis for health effects in wildlife and humans. Oxford; Oxford University Press: 2005.

Fort DJ, Rogers RL, Gorsuch JW, Navarro LT, Peter R, Plautz JR. Triclosan and anuran metamorphosis: no effect on tyroid-mediated metamorphosis in Xenopus laevis. Toxicol. Sci. 2010;113:392-400. crossref(new window)

Fort DJ, Mathis MB, Hanson W, et al. Triclosan and thyroid-mediated metamorphosis in anurans: differentiating growth effects from thyroid-driven metamorphosis in Xenopus laevis. Toxicol. Sci. 2011;121:292-302. crossref(new window)

Jacobs MN, Nolan GT, Hood SR. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol. Appl. Pharmacol. 2005;209:123-133. crossref(new window)

Matsumura N, Ishibashi H, Hirano M, et al. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis). Biol. Pharm. Bull. 2005;28:1748-1751. crossref(new window)

Zorrilla LM, Gibson EK, Jeffay SC, et al. The effects of triclosan on puberty and thyroid Hormones in male wistar rats. Toxicol. Sci. 2009;107:56-64. crossref(new window)

Kumar V, Chakraborty A, Kural MR, Roy P. Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod. Toxicol. 2009;27:177-185. crossref(new window)

Jones RD, Jampani HB, Newman JL, Lee AS. Triclosan: a review of effectiveness and safety in health care settings. Am. J. Infect. Control. 2000;28:184-196. crossref(new window)

McMurry LM., Oethinger M, Levy SB. Triclosan targets lipid synthesis. Nature 1998;394:531-532. crossref(new window)

Russell AD. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet. Infect. Dis. 2003;3:794-803. crossref(new window)

Levy SB. Antibacterial household products: cause for concern. Emerg. Infect. Dis. 2001;7:512-515. crossref(new window)

Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. 2012;19:1044-1065. crossref(new window)

Reiss R, Mackay N, Habig C, Griffin J. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ. Toxicol. Chem. 2002;21:2483-2492. crossref(new window)

Cha J, Cupples AM. Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids. Water Res. 2009;43:2522-2530. crossref(new window)

Lozano N, Rice CP, Ramirez M, Torrents A. Fate of triclosan in agricultural soils after biosolid applications. Chemosphere 2010;78:760-766. crossref(new window)

NICNAS T. Priority existing chemical assessment report no. 30. National Industrial Chemicals Notification and Assessment Scheme, Department of Health and Ageing, Australian Government, Sydney, Australia; 2009.

Kim JW, Ishibashi H, Hirano M, et al. Contamination of pharmaceutical and personal care products in sewage treatment plants and surface waters in South Korea and their removal during activated sludge treatment. J. Environ. Chem. 2010;20:127-135. crossref(new window)

Behera SK, Kim HW, Oh JE, Park HS. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 2011;409:4351-4360. crossref(new window)

McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 2002;21:1323-1329. crossref(new window)

Chalew TEA, Halden RU. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J. Am. Water Res. Assoc. 2009;45:4-13. crossref(new window)

Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007;41:1013-1021. crossref(new window)

Ryu J, Yoon Y, Oh J. Occurrence of endocrine disrupting compounds and pharmaceuticals in 11 WWTPs in Seoul, Korea. KSCE J. Civil Eng. 2011;15:57-64. crossref(new window)

Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010;408:636-643. crossref(new window)

Aguera A, Fernandez-Alba AR, Piedra L, Mezcua M, Gomez MJ. Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. Anal. Chim. Acta 2003;480:193-205. crossref(new window)

Miller TR, Heidler J, Chillrud SN, et al. Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environ. Sci. Technol. 2008;42:4570-4576. crossref(new window)

Lapworth DJ, Baran N, Stuart ME, Ward RS. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 2012;163:287-303. crossref(new window)

Morales S, Canosa P, Rodriguez I, Rubi E, Cela R. Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. J. Chromatogr. A 2005;1082:128-135. crossref(new window)

Ying GG, Kookana RS. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ. Int. 2007;33:199-205. crossref(new window)

Lee HB, Peart TE. Organic contaminants in Canadian municipal sewage sludge. Part I. Toxic or endocrine-disrupting phenolic compounds. Water Qual. Res. J. Canada 2002;37:681-696.

Chu SG, Metcalfe CD. Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2007;1164:212-218. crossref(new window)

Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ. Sci. Technol. 2010;44:6157-6161. crossref(new window)

Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Urinary concentrations of triclosan in the US population: 2003-2004. Environ. Health Perspect. 2008;116:303-307.

Wolff MS, Teitelbaum SL, Windham G, et al. Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ. Health Perspect. 2007;115:116-121.

Dirtu AC, Roosens L, Geens T, Gheorghe A, Neels H, Covaci A. Simultaneous determination of bisphenol A, triclosan, and tetrabromobisphenol A in human serum using solid-phase extraction and gas chromatography-electron capture negativeionization mass spectrometry. Anal. Bioanal. Chem. 2008;391: 1175-1181. crossref(new window)

Canosa P, Rodriguez I, Rubi E, Cela R. Determination of parabens and triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry. Anal. Chem. 2007;79:1675-1681. crossref(new window)

Adolfsson-Erici M, Allmyr M. Consumer products containing antibacterial substances - a source of human and environmental exposure? In: Stockolms Stad Report. Stockolms Stad Stockolm, Sweden; 2007.

Lindstrom A, Buerge IJ, Poiger T, Bergqvist PA, Muller MD, Buser HR. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ. Sci. Technol. 2002;36:2322-2329. crossref(new window)

Balmer ME, Poiger T, Droz C, et al. Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ. Sci. Technol. 2004;38:390-395. crossref(new window)

Farre M, Asperger D, Kantiani L, Gonzalez S, Petrovic M, Barcelo D. Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri. Anal. Bioanal. Chem. 2008;390:1999-2007. crossref(new window)

Latch DE, Packer JL, Stender BL, VanOverbeke J, Arnold WA, McNeill K. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ. Toxicol. Pharmacol. 2005;24: 517-525.

Mezcua M, Gomez MJ, Ferrer I, Aguera A, Hernando MD, Fernandez-Alba AR. Evidence of 2,7/2,8-dibenzodichloro-pdioxin as a photodegradation product of triclosan in water and wastewater samples. Anal. Chim. Acta 2004;524:241-247. crossref(new window)

Lores M, Llompart M, Sanchez-Prado L, Garcia-Jares C, Cela R. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME. Anal. Bioanal. Chem. 2005;381:1294-1298. crossref(new window)

Buth JM, Grandbois M, Vikesland PJ, McNeill K, Arnold WA. Aquatic photochemstry of chlorinated triclosan derivatives: potential source of polychlodibenzo-p-dioxins. Environ. Toxicol. Chem. 2009;28:2555-2563. crossref(new window)

Sanchez-Prado L, Llompart M, Lores M, Fernandez-Alvarez M, Garcia-Jares C, Cela R. Further research on the photo-SPME of triclosan. Anal. Bioanal. Chem. 2006;384:1548-1557. crossref(new window)

Mason G, Farrell K, B Keys, Piskorska-Pliszczynska J, Safe L, Safe S. Polychlorinated dibenzo-p-dioxins: quantitative in vitro and in vivo structure-activity relationships. Toxicol. 1986;41:21-31. crossref(new window)

Canosa P, Morales S, Rodriguez I, Rubi E, Cela R, Gomez M. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine. Anal. Bioanal. Chem. 2005;383:1119-1126. crossref(new window)

Fiss EM, Rule KL, Vikesland PJ. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environ. Sci. Technol. 2007;41: 2387-2394. crossref(new window)