Advanced SearchSearch Tips
Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 20, Issue 3,  2015, pp.237-245
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2015.057
 Title & Authors
Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China
Chen, Xi; Li, Angui;
  PDF(new window)
Particulate matter in indoor environments has caused public concerns in recent years. The objective of this research is to explore the influence of radiators on particle size distributions and concentrations. The particle size distributions as well as concentrations above radiators and in the adjacent indoor air are monitored in forty-two indoor environments in Xi'an, China. The temperatures, relative humidity and air velocities are also measured. The particle size distributions above radiators at ten locations are analyzed. The results show that the functional difference of indoor environments has little impact on the particle size distributions above radiators. Then the effects of the environmental parameters (particle concentrations in the adjacent indoor air, temperatures, relative humidities and air velocities) on particle concentrations above radiators are assessed by applying multiple linear regression analysis. Three multiple linear regression models are established to predict the concentrations of , and above radiators.
Environmental parameters;Multiple linear regression;Particle size distribution;Particulate matter;Radiator;
 Cited by
Robinson J, Nelson WC. National human activity pattern survey data base. Research Triangle Park: United States Environmental Protection Agency; 1995

Morawska L, Salthammer T. Indoor environment: airborne particles and settled dust. John Wiley & Sons; 2006.

Krupinska B, Van Grieken R, De Wael K. Air quality monitoring in a museum for preventive conservation: Results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium. Microchem. J. 2013;110:350-360. crossref(new window)

Shehabi A, Horvath A, Tschudi W, Gadgil AJ, Nazaroff WW. Particle concentrations in data centers. Atmos. Environ. 2008;42:5978-5990. crossref(new window)

Salthammer T, Fauck C, Schripp T, Meinlschmidt P, Willenborg S, Moriske HJ. Effect of particle concentration and semi-volatile organic compounds on the phenomenon of 'black magic dust' in dwellings. Build. Environ. 2011;46:1880-1890. crossref(new window)

Laiman R, He CR, Mazaheri M, et al. Characteristics of ultrafine particle sources and deposition rates in primary school classrooms. Atmos. Environ. 2014;94:28-35. crossref(new window)

Cao Z, Xu F, Covaci A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environ. Sci. Technol. 2014;48:8839-8846. crossref(new window)

Liu C, Zhang Y, Weschler CJ. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments. Sci. Total. Environ. 2014;497-498:401-411. crossref(new window)

Qian J, Peccia J, Ferro AR. Walking-induced particle resuspension in indoor environments. Atmos. Environ. 2014;89:464-481. crossref(new window)

Nazaroff WW, Cass GR. Protecting museum collections from soiling due to the deposition of airborne particles. Atmospheric Environment. Part A. General Topics 1991;25:841-852. crossref(new window)

O'Shaughnessy PT. Occupational health risk to nanoparticulate exposure. Environ. Sci. Process. Impacts. 2013;15:49-62. crossref(new window)

Kliucininkas L, Krugly E, Stasiulaitiene I, et al. Indoor-outdoor levels of size segregated particulate matter and mono/polycyclic aromatic hydrocarbons among urban areas using solid fuels for heating. Atmos. Environ. 2014;97:83-93. crossref(new window)

Lioy PJ, Wainman T, Zhang JF, Goldsmith S. Typical household vacuum cleaners: The collection efficiency and emissions characteristics for fine particles. J. Air. Waste. Manag. Assoc. 1999;49:200-206. crossref(new window)

Dacunto PJ, Cheng KC, Acevedo-Bolton V, et al. Real-time particle monitor calibration factors and $PM_{2.5}$ emission factors for multiple indoor sources. Environ. Sci-Proc. Imp. 2013;15:1511-1519.

Stabile L, Fuoco FC, Marini S, Buonanno G. Effects of the exposure to indoor cooking-generated particles on nitric oxide exhaled by women. Atmos. Environ. 2015;103:238-246. crossref(new window)

Armendariz-Arnez C, Edwards RD, Johnson M, Rosas IA, Espinosa F, Masera OR. Indoor particle size distributions in homes with open fires and improved Patsari cook stoves. Atmos. Environ. 2010;44:2881-2886. crossref(new window)

Hoek G, Kos G, Harrison R, et al. Indoor-outdoor relationships of particle number and mass in four European cities. Atmos. Environ. 2008;42:156-169. crossref(new window)

Alves C, Calvo AI, Marques L, et al. Particulate matter in the indoor and outdoor air of a gymnasium and a fronton. Environ. Sci. Pollut. R 2014;21:12390-12402. crossref(new window)

Sangiorgi G, Ferrero L, Ferrini BS, et al. Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmos. Environ. 2013;65:205-214. crossref(new window)

Challoner A, Gill L. Indoor/outdoor air pollution relationships in ten commercial buildings: $PM_{2.5}$ and $NO_2$. Build. Environ. 2014;80:159-173. crossref(new window)

Buczynska AJ, Krata A, Van Grieken R, et al. Composition of $PM_{2.5}$ and $PM_1$ on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Sci. Total. Environ. 2014;490:134-143. crossref(new window)

Zhao B, Wu J. Particle deposition in indoor environments: Analysis of influencing factors. J. Hazard. Mater. 2007;147:439-448. crossref(new window)

Isaxon C, Gudmundsson A, Nordin EZ, et al. Contribution of indoor-generated particles to residential exposure. Atmos. Environ. 2015;106:458-466. crossref(new window)

Tseng CH, Wang HC, Xiao NY, Chang YM. Examining the feasibility of prediction models by monitoring data and management data for bioaerosols inside office buildings. Build. Environ. 2011;46:2578-2589. crossref(new window)

Elbayoumi M, Ramli NA, Yusof NFFM, Bin Yahaya AS, Al Madhoun W, Ul-Saufie AZ. Multivariate methods for indoor $PM_{10}$ and $PM_{2.5}$ modelling in naturally ventilated schools buildings. Atmos. Environ. 2014;94:11-21. crossref(new window)

Gauvin S, Reungoat P, Cassadou S, et al. Contribution of indoor and outdoor environments to $PM_{2.5}$ personal exposure of children - VESTA study. Sci. Total. Environ. 2002;297:175-181. crossref(new window)

Kousa A, Oglesby L, Koistinen K, Kunzli N, Jantunen M. Exposure chain of urban air $PM_{2.5}$ - associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmos. Environ. 2002;36:3031-3039. crossref(new window)

Kang Y, Zhong K, Lee S. Relative levels of indoor and outdoor particle number concentrations in a residential building in Xi'an. China particuology 2006;4:342-345. crossref(new window)

Wang B, Zhao B, Chen C. A simplified methodology for the prediction of mean air velocity and particle concentration in isolation rooms with downward ventilation systems. Build. Environ. 2010;45:1847-1853. crossref(new window)

Ruths M, von Bismarck-Osten C, Weber S. Measuring and modelling the local-scale spatio-temporal variation of urban particle number size distributions and black carbon. Atmos. Environ. 2014;96:37-49. crossref(new window)

Spilak MP, Frederiksen M, Kolarik B, Gunnarsen L. Exposure to ultrafine particles in relation to indoor events and dwelling characteristics. Build. Environ. 2014;74:65-74. crossref(new window)

Grimm Aerosol. Portable Laser Aerosolspectrometer and Dust Monitor Model 1.108/1.109. Germany: Grimm Aerosol Technlk GmbH&Co.KG; 2007

Massey D, Kulshrestha A, Masih J, Taneja A. Seasonal trends of $PM_{10},\;PM_{5.0},\;PM_{2.5}\;&\;PM_{1.0}$ in indoor and outdoor environments of residential homes located in North-Central India. Build. Environ. 2012;47:223-231. crossref(new window)

Hassanvand MS, Naddafi K, Faridi S, et al. Indoor/outdoor relationships of $PM_{10},\;PM_{2.5}\;and\;PM_1$ mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos. Environ. 2014;82:375-382. crossref(new window)

TSI incorporated. $VelociCalc^{(R)}$ Plus Air Velocity Meter (Models 8384/8384A/8385/8385A/8386/8386A): Operation and Service Manual. USA: TSI Incorporated; 2010.

Vlachogianni A, Kassomenos P, Karppinen A, Karakitsios S, Kukkonen J. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and $PM_{10}$ in Athens and Helsinki. Sci. Total. Environ. 2011;409:1559-1571. crossref(new window)

Tran DT, Alleman LY, Coddeville P, Galloo JC. Indoor-outdoor behavior and sources of size-resolved airborne particles in French classrooms. Build. Environ. 2014;81:183-191. crossref(new window)

Balachandran S, Meena BR, Khillare PS. Particle size distribution and its elemental composition in the ambient air of Delhi. Environ. Int. 2000;26:49-54. crossref(new window)

Chatoutsidou SE, Ondracek J, Tesar O, Tørseth K, Zdimal V, Lazaridis M. Indoor/outdoor particulate matter number and mass concentration in modern offices. Build. Environ. 2015;92:462-474. crossref(new window)

Lai ACK. Particle deposition indoors: a review. Indoor. Air. 2002;12:211-214. crossref(new window)

Sarwar G, Corsi R, Allen D, Weschler C. The significance of secondary organic aerosol formation and growth in buildings: experimental and computational evidence. Atmos. Environ. 2003;37:1365-1381. crossref(new window)

Fromme H, Twardella D, Dietrich S, et al. Particulate matter in the indoor air of classrooms - exploratory results from Munich and surrounding area. Atmos. Environ. 2007;41:854-866. crossref(new window)