Advanced SearchSearch Tips
Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 20, Issue 3,  2015, pp.246-253
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2015.055
 Title & Authors
Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates
Ahn, Junmo; Jho, Eun Hea; Nam, Kyoungphile;
  PDF(new window)
The effects of carbon-to-nitrogen (C/N) ratio in simulated rice straw hydrolysates using glucose and ammonium chloride on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator was investigated. In general, PHA accumulation rate was higher under higher degrees of N-deficient conditions (e.g., C/N ratio of 360:1) than lower degrees of N-deficient conditions (e.g., C/N ratio of 3.6:1 and 36:1). Also, the most PHA accumulation was observed during the first 12 h after the PHA accumulation initiation. This study showed that the similar PHA accumulation could be achieved by using different accumulation periods depending on C/N ratios. N source presence was important for new cell production, supported by approximately ten times greater PHA accumulation under the N-deficient condition ( 0.01 g/L) than the N-free (without ) condition after 96 h. C/N ratio of the rice straw hydrolysate was approximately 160:1, based on the glucose content, and this accumulated PHA with PHA content of after 12 h. Since external C or N source addition for C/N ratio adjustment increases production cost, an appropriate accumulation period may be used for PHA accumulation from organic wastes, based on the PHA accumulation patterns observed at various C/N ratios and C and N concentrations.
Carbon-to-nitrogen ratio;Hydrolysates;PHA;Poly (3-hydroxybutyrate);Polyhydroxyalkanoates;Rice straw;
 Cited by
Effects of controlled environmental changes on the mineralization of soil organic matter, Environmental Engineering Research, 2017, 22, 4, 347  crossref(new windwow)
Chanprateep S. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 2010;110:621-632. crossref(new window)

Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbuchel A. PHA recovery from biomass. Biomacromolecules 2013;14:2963-2972. crossref(new window)

Akaraonye E, Keshavarz T, Roy I. Production of polyhydroxyalkanoates: the future green materials of choice. J. Chem. Technol. Biot. 2010;85:732-743. crossref(new window)

FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 2010;101:8915-8922. crossref(new window)

Davis R, Kataria R, Cerrone F, et al. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour. Technol. 2013;150:202-209. crossref(new window)

Silva LF, Taciro MK, Raicher G, et al. Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. Int. J. Biol. Macromol. 2014;71:2-7. crossref(new window)

Baei MS, Najafpour G, Younesi H, Tabandeh F, Eisazadeh H. Poly (3-hydroxybutyrate) synthesis by Cupriavidus necator DSMZ 545 utilizing various carbon sources. World. Appl. Sci. J. 2009;7:157-161.

Sindhu R, Silviya N, Binod P, Pandey A. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem. Eng. J. 2013;78:67-72. crossref(new window)

Verlinden RA, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 2011;1:1-8. crossref(new window)

Song JH, Jeon CO, Choi MH, Yoon SC, Park W. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J. Microbiol. Biotechnol. 2008;18:1408-1415.

Hiraishi A, Khan S. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl. Microbiol. Biot. 2003;61:103-109. crossref(new window)

Hassan A, Shirai Y, Kusubayashi N, Karim IA, Nakanishi K, Hasimoto K. The production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. J. Ferment. Bioeng. 1997;83:485-488. crossref(new window)

Du G, Yu J. Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates. Environ. Sci. Technol. 2002;36:5511-5516. crossref(new window)

Peter HY, Chua H, Huang A-L, Ho K-P. Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl. Biochem. Biotech. 1999;78:445-454. crossref(new window)

Solaiman DK, Ashby RD, Foglia TA, Marmer WN. Conversion of agricultural feedstock and coproducts into poly (hydroxyalkanoates). Appl. Microbiol. Biot. 2006;71:783-789. crossref(new window)

Huang T-Y, Duan K-J, Huang S-Y, Chen CW. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J. Ind. Microbiol. Biot. 2006;33:701-706. crossref(new window)

Koller M, Bona R, Braunegg G, et al. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 2005;6:561-565. crossref(new window)

Munoz A, Esteban L, Riley MR. Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol. Bioeng. 2008;100:882-888. crossref(new window)

Van‐Thuoc D, Quillaguaman J, Mamo G, Mattiasson B. Utilization of agricultural residues for poly (3-hydroxybutyrate) production by Halomonas boliviensis LC1. J. Appl. Microbiol. 2008;104:420-428.

Faccin DJL, Martins I, Cardozo NSM, et al. Optimization of C: N ratio and minimal initial carbon source for poly (3-hydroxybutyrate) production by Bacillus megaterium. J. Chem. Technol. Biotechnol. 2009;84:1756-1761. crossref(new window)

Yang Y-H, Brigham CJ, Budde CF, et al. Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl. Microbiol. Biot. 2010;87:2037-2045. crossref(new window)

Wang Y, Hua F, Tsang Y, et al. Synthesis of PHAs from waster under various C: N ratios. Bioresour. Technol. 2007;98:1690-1693. crossref(new window)

Nguyen T-AD, Kim K-R, Han SJ, et al. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour. Technol. 2010;101:7432-7438. crossref(new window)

Lee K-H, Kang B-S, Park Y-K, Kim J-S. Influence of reaction temperature, pretreatment, and a char removal system on the production of bio-oil from rice straw by fast pyrolysis, using a fluidized bed. Energ. Fuel. 2005;19:2179-2184. crossref(new window)

Werker A, Lind P, Bengtsson S, Nordstrom F. Chlorinated-solvent- free gas chromatographic analysis of biomass containing polyhydroxyalkanoates. Water Res. 2008;42:2517-2526. crossref(new window)

Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N. Inexpensive fed-batch cultivation for high poly (3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J. Biosci. Bioeng. 2009;107:240-245. crossref(new window)

Ma C, Chua H, Yu P, Hong K. Optimal production of polyhydroxyalkanoates in activated sludge biomass. Appl. Biochem. Biotech. 2000;84:981-989.

Daneshi A, Younesi H, Ghasempouri SM, Sharifzadeh M. Production of poly-3-hydroxybutyrate by Cupriavidus necator from corn syrup: statistical modeling and optimization of biomass yield and volumetric productivity. J. Chem. Technol. Biotechnol. 2010;85:1528-1539.

Fereidouni M, Younesi H, Daneshi A, Sharifzadeh M. The effect of carbon source supplementation on the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator. Biotechnol. Appl. Bioc. 2011;58:203-211. crossref(new window)

Saranya V, Shenbagarathai R. Effect of nitrogen and calcium sources on growth and production of PHA of Pseudomonas sp. LDC-5 and its mutant. Curr. Res. J. Biol. Sci. 2010;2:164-167.

Yu J, Stahl H. Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour. Technol. 2008;99:8042-8048. crossref(new window)