JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 20, Issue 4,  2015, pp.307-328
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2015.074
 Title & Authors
Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment
Brunetti, Adele; Macedonio, Francesca; Barbieri, Giuseppe; Drioli, Enrico;
  PDF(new window)
 Abstract
The increasing demand for materials, energy and products drives chemical engineers to propose new solutions everyday able to promote development while supporting sustainable industrial growth. Membrane engineering can offer significant assets to this development. Here, they are identified the most interesting aspects of membrane engineering in strategic industrial sectors such as water treatment, energy production and depletion and reuse of raw materials. The opportunity to integrate membrane units with innovative systems to exploit the potential advantages derived from their synergic uses is also emphasized. The analysis of the potentialities of these new technologies is supported by the introduction of process intensification metrics which provide an alternative and innovative point of view regarding the unit performance, highlighting important aspects characterizing the technology and not identified by the conventional analysis of the unit performance.
 Keywords
Green process engineering;Membrane;Metrics;
 Language
English
 Cited by
1.
In situ restoring of aged thermally rearranged gas separation membranes, Journal of Membrane Science, 2016, 520, 671  crossref(new windwow)
 References
1.
Dautzenberg FM, Mukherjee M. Process intensification using multifunctional reactors. Chem. Eng. Sci. 2001;56:251-267. crossref(new window)

2.
Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q. Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. Chemsuschem. 2013;6:746-789. crossref(new window)

3.
Boodhoo K, Harvey A. Process Intensification for Green Chemistry. Chem. Listy. 2013;107:665-669.

4.
Gong J, You F. Sustainable design and synthesis of energy systems. Curr. Opin. Chem. Eng. 2015;10:77-86. crossref(new window)

5.
WHO and UNICEF. Progress on Drinking Water and Sanitation [Internet]. WHO and UNICEF; c2014 [cited 2012 Apr. 13]. Available from: http://www.wssinfo.org/fileadmin/user_upload/resources/JMP_report_2014_webEng.pdf.

6.
Quist-Jensen C, Macedonio F, Drioli E. Membrane crystallization for salts recovery from brine-an experimental and theoretical analysis. Desalin. Water Treat. 2015:1-11.

7.
Elimelech M, Phillip WA. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011;333:712-717. crossref(new window)

8.
Fritzmann C, Lowenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007;216:1-76. crossref(new window)

9.
Global Water Intelligence (GWI/IDA DesalData). Market profile and desalination markets [Internet]. Global Water Intelligence; c2013 [cited 2014 May]. Available from: http://www.desaldata.com/.

10.
Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination - Energy, exergy and costs analysis. Chem. Eng. Res. Des. 2006;84:209-220. crossref(new window)

11.
Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination 2007;203:260-276. crossref(new window)

12.
Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. 2012;51:2-17. crossref(new window)

13.
Semiat R. Energy Demands in Desalination Processes. ES&T. 2008;42:8193-8201. crossref(new window)

14.
Van der Bruggen B, Vandecasteele C. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 2002;143:207-218. crossref(new window)

15.
Drioli E, Ali A, Macedonio F. Membrane distillation: Recent developments and perspectives. Desalination 2015;356:56-84. crossref(new window)

16.
Miller GW. Integrated concepts in water reuse: managing global water needs. Desalination 2006;187:65-75. crossref(new window)

17.
Bixio D, Thoeye C, De Koning J, et al. Wastewater reuse in Europe. Desalination 2006;187:89-101. crossref(new window)

18.
Cote P, Buisson H, Praderie M. Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Sci. Technol. 1998;38:437-442. crossref(new window)

19.
Drioli E, Stankiewicz AI, Macedonio F. Membrane engineering in process intensification-An overview. J. Membr. Sci. 2011;380:1-8. crossref(new window)

20.
Redondo JA. Brackish-, sea- and wastewater desalination. Desalination 2001;138:29-40. crossref(new window)

21.
Tazi-Pain A, Schrotter JC, Bord G, Payreaudeau M, Buisson H. Recent improvement of the BIOSEP (R) process for industrial and municipal wastewater treatment. Desalination 2002;146:439-443. crossref(new window)

22.
Melin T, Jefferson B, Bixio D, et al. Membrane bioreactor technology for wastewater treatment and reuse. Desalination 2006;187:271-282. crossref(new window)

23.
Judd S, Jefferson B. Membranes for industrial wastewater recovery and re-use: Elsevier; 2003.

24.
Michels B, Adamczyk F, Koch J. Retrofit of a flue gas heat recovery system at the Mehrum Power Plant. An example of power plant lifetime evaluation in practice. In: Proceedings of the POWER-GEN Europe Conference; 2004. p. 10-11.

25.
Folkedahl BC, Weber GF, Collings ME. Water extraction from coal-fired power plant flue gas: University of North Dakota; 2006.

26.
Ito A. Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. J. Membr. Sci. 2000;175:35-42. crossref(new window)

27.
Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M. Flue gas dehydration using polymer membranes. J. Membr. Sci. 2008;313:263-276. crossref(new window)

28.
Zhang LZ, Zhu DS, Deng XH, Hua B. Thermodynamic modeling of a novel air dehumidification system. Energ. Buildings 2005;37:279-286. crossref(new window)

29.
Drioli E, Santoro S, Simone S, et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. React. Funct. Polym. 2014;79:1-7. crossref(new window)

30.
Macedonio F, Cersosimo M, Brunetti A, Barbieri G, Drioli E. Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chem. Eng. Process 2014;86:196-203. crossref(new window)

31.
Brunetti A, Santoro S, Macedonio F, Figoli A, Drioli E, Barbieri G. Waste Gaseous Streams: From Environmental Issue to Source of Water by Using Membrane Condensers. Clean-Soil Air Water 2014;42:1145-1153. crossref(new window)

32.
Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane Condenser as a New Technology for Water Recovery from Humidified "Waste" Gaseous Streams. Ind. Eng. Chem. Res. 2013;52:1160-1167. crossref(new window)

33.
Isetti C, Nannei E, Magrini A. On the application of a membrane air-liquid contactor for air dehumidification. Energ. Buildings 1997;25:185-193. crossref(new window)

34.
Wadhwani S, Wadhwani AK, Agarwal RB. Clean coal technologies - recent advances. In: First International Conference on Clean Coal Technologies for Our Future; 2002 Oct 21-23;Sardinia, Italy.

35.
Kothari R, Buddhi D, Sawhney RL. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sust. Energ. Rev. 2008;12:553-563. crossref(new window)

36.
Raggio G, Pettinau A, Orsini A, et al. Coal gasification pilot plant for hydrogen production. Part B: syngas conversion and hydrogen separation, CCT 2005. In: Second International Conference on Clean Coal Technologies for Our Future; 2005 May 10-12; Castiadas, Sardinia, Italy.

37.
Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy. 2005;78:661-669. crossref(new window)

38.
Barbieri G, Brunetti A, Tricoli G, Drioli E. An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen - Experimental analysis of water gas shift. J. Power Sources 2008;182:160-167. crossref(new window)

39.
Brunetti A, Barbieri G, Drioli E. Pd-Based Membrane Reactor for Syngas Upgrading. Energy & Fuels. 2009;23:5073-5076. crossref(new window)

40.
Brunetti A, Barbieri G, Drioli E. Integrated membrane system for pure hydrogen production: A Pd-Ag membrane reactor and a PEMFC. Fuel Process Technol. 2011;92:166-174. crossref(new window)

41.
Barbieri G, Brunetti A, Caravella A, Drioli E. Pd-based membrane reactors for one-stage process of water gas shift. Rsc. Adv. 2011;1:651-661. crossref(new window)

42.
Brunetti A, Drioli E, Barbieri G. Medium/high temperature water gas shift reaction in a Pd-Ag membrane reactor: an experimental investigation. Rsc. Adv. 2012;2:226-233. crossref(new window)

43.
Abashar MEE, Alhumaizi KI, Adris AM. Investigation of methane-steam reforming in fluidized bed membrane reactors. Chem. Eng. Res. Des. 2003;81:251-258. crossref(new window)

44.
Tsotsis TT, Champagnie AM, Vasileiadis SP, Ziaka ZD, Minet RG. Packed-Bed Catalytic Membrane Reactors. Chem. Eng. Sci. 1992;47:2903-2908. crossref(new window)

45.
Adris AM, Lim CJ, Grace JR. The fluidized-bed membrane reactor for steam methane reforming: Model verification and parametric study. Chem. Eng. Sci. 1997;52:1609-1622. crossref(new window)

46.
Brunetti A, Barbieri G, Drioli E. Upgrading of a syngas mixture for pure hydrogen production in a Pd-Ag membrane reactor. Chem. Eng. Sci. 2009;64:3448-3454. crossref(new window)

47.
Strezov V, Evans TJ. Biomass processing technologies: CRC Press; 2014.

48.
Drioli E, Brunetti A, Di Profio G, Barbieri G. Process intensification strategies and membrane engineering. Green Chem. 2012;14:1561-1572. crossref(new window)

49.
Stankiewicz A, Moulijn JA. Process intensification. Ind. Eng. Chem. Res. 2002;41:1920-1924. crossref(new window)

50.
Charpentier J. Process intensification, a path to the future. Ingenieria quimica. 2006:16-24.

51.
Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 2010;359:126-139. crossref(new window)

52.
Esteves A, Mota JPB. Novel Hybrid Membrane/Pressure Swing Adsorption Processes for Gas Separation Applications. In: Membrane Engineering for the treatment of gases; 2011; Cambridge, The United Kingdom: The Royal Society of Chemistry. p. 245-275.

53.
Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for $CO_2$ separation. J. Membr. Sci. 2010;359:115-125. crossref(new window)

54.
Shao L, Low BT, Chung TS, Greenberg AR. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. J. Membr. Sci. 2009;327:18-31. crossref(new window)

55.
Favre E, Bounaceur R, Roizard D. Biogas, membranes and carbon dioxide capture. J. Membr. Sci. 2009;328:11-14. crossref(new window)

56.
Basu S, Khan AL, Cano-Odena A, Liu CQ, Vankelecom IFJ. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010;39:750-768. crossref(new window)

57.
Lin HQ, Van Wagner E, Raharjo R, Freeman BD, Roman I. High-performance polymer membranes for natural-gas sweetening. Adv. Mater. 2006;18:39-44. crossref(new window)

58.
Scholes CA, Bacus J, Chen GQ, et al. Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas. J. Membr. Sci. 2012;389:470-477. crossref(new window)

59.
Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for $CO_2$ separation. J. Membr. Sci. 2010;359:115-125. crossref(new window)

60.
Ciferno JP, Fout TE, Jones AP, Murphy JT. Capturing Carbon from Existing Coal-Fired Power Plants. Chem. Eng. Prog. 2009;105:33-41.

61.
Herzog H. What future for carbon capture and sequestration: new technologies could reduce carbon dioxide emissions to the atmosphere while still allowing the use of fossil fuels. Environ. Sci. Technol. 2001;35.

62.
White CM, Strazisar BR, Granite EJ, et al. Separation and capture of $CO_2$ from large stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 2003;53.6:645-715. crossref(new window)

63.
Favre E. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? J. Membr. Sci. 2007;294:50-59. crossref(new window)

64.
Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 2010;359:126-139. crossref(new window)

65.
Li BY, Duan YH, Luebke D, Morreale B. Advances in $CO_2$ capture technology: A patent review. Appl. Energ. 2013;102:1439-1447. crossref(new window)

66.
Peters L, Hussain A, Follmann M, Melin T, Hagg MB. $CO_2$ removal from natural gas by employing amine absorption and membrane technology-A technical and economical analysis. Chem. Eng. J. 2011;172:952-960. crossref(new window)

67.
Daal L, Claassen L, Bruns R, et al. Field tests of carbon dioxide removal from flue gasses using polymer membranes. VGB powertech. 2013.

68.
Tuinier MJ, Hamers HP, Annaland MV. Techno-economic evaluation of cryogenic $CO_2$ capture-A comparison with absorption and membrane technology. Int. J. Greenh. Gas. Con. 2011;5:1559-1565. crossref(new window)

69.
Powell CE, Qiao GG. Polymeric $CO_2$/$N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006;279:1-49. crossref(new window)

70.
Luis P, Van Gerven T, Van der Bruggen B. Recent developments in membrane-based technologies for $CO_2$ capture. Prog. Energ. Combust. Sci. 2012;38:419-448. crossref(new window)

71.
Ramasubramanian K, Ho WW. Recent developments on membranes for post-combustion carbon capture. Curr. Opin. Chem. Eng. 2011;1:47-54. crossref(new window)

72.
Park HB, Jung CH, Lee YM, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 2007;318:254-258. crossref(new window)

73.
Jung CH, Lee JE, Han SH, Park HB, Lee YM. Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation. J. Membr. Sci. 2010;350:301-309. crossref(new window)

74.
Calle M, Lee YM. Thermally rearranged (TR) poly (ether- benzoxazole) membranes for gas separation. Macromolecules 2011;44:1156-1165. crossref(new window)

75.
Adams RT, Lee JS, Bae T-H, et al. $CO_2$-CH4 permeation in high zeolite 4A loading mixed matrix membranes. J. Membr. Sci. 2011;367:197-203. crossref(new window)

76.
Adams R, Carson C, Ward J, Tannenbaum R, Koros W. Metal organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mat. 2010;131:13-20. crossref(new window)

77.
Robeson, Lloyd M. The upper bound revisited. J. Memb. Sci. 2008;320.1:390-400. crossref(new window)

78.
Low BT, Zhao L, Merkel TC, Weber M, Stolten D. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J. Membr. Sci. 2013;431:139-155. crossref(new window)

79.
Association ID. IDA Desalination Yearbook 2011-2012. Water Desalination Report. 2012:62-83.

80.
Bardi U. Extracting minerals from seawater: an energy analysis. Sustainability 2010;2:980-992. crossref(new window)

81.
Floor Anthoni. The chemical composition of seawater [Internet]. Floor Anthoni [cited 2015 Feb. 5]. Available from: http://www.seafriends.org.nz/oceano/seawater.htm.

82.
United States Geological Survey (USGS). Mineral Commodities Summaries 2015 [Internet]. USGS [cited 2015 Feb. 05]. Available from: http://minerals.usgs.gov/minerals/pubs/mcs/.

83.
Nelson KH, Thompson TG. Deposition of salts from sea water by frigid concentration: DTIC Document; 1954.

84.
Van der Ham F, Seckler MM, Witkamp GJ. Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer. Chem. Eng. Process. 2004;43:161-167. crossref(new window)

85.
Drioli E, Di Profio G, Curcio E. Progress in membrane crystallization. Curr. Opin. Chem. Eng. 2012;1:178-182. crossref(new window)

86.
Di Profio G, Curcio E, Drioli E. Trypsin crystallization by membrane-based techniques. J. Struct. Biol. 2005;150:41-49. crossref(new window)

87.
Drioli E, Curcio E, Criscuoli A, Di Profio G. Integrated system for recovery of $CaCO_3$, NaCl and $MgSO_4{\cdot}7H_2O$ from nanofiltration retentate. J. Membr. Sci. 2004;239:27-38. crossref(new window)

88.
Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Ind. Eng. Chem. Res. 2001;40:2679-2684. crossref(new window)

89.
Brunetti A, Drioli E, Barbieri G. Energy and mass intensities in hydrogen upgrading by a membrane reactor. Fuel Process. Technol. 2014;118:278-286. crossref(new window)

90.
Barbieri G, Marigliano G, Perri G, Drioli E. Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: methane steam reforming. Ind. Eng. Chem. Res. 2001;40:2017-2026. crossref(new window)

91.
Choi S-H, Brunetti A, Drioli E, Barbieri G. $H_2$ separation from $H_2$/$N_2$ and $H_2$/CO mixtures with co-polyimide hollow fiber module. Separ. Sci. Technol. 2010;46:1-13. crossref(new window)

92.
G. Q. Miller, J. Stocker, Proceeding of the 4th European Technical Seminar on Hydrogen Plants. Lisbon (Portugal); 2003. p. 22-25.

93.
Spillman RW. Economics of gas separation membranes. Chem. Eng. Prog. 1989;85:41-62.

94.
Brunetti A, Sun Y, Caravella A, Drioli E, Barbieri G. Process Intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems. Int. J. Greenh. Gas Con. 2015;35:18-29. crossref(new window)