JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 21, Issue 1,  2016, pp.1-14
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2015.086
 Title & Authors
Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review
Oyegbile, Benjamin; Ay, Peter; Narra, Satyanarayana;
  PDF(new window)
 Abstract
Flocculation is a widely used phase separation technique in industrial unit processes and is typically observed in many natural flow systems. Advances in colloidal chemistry over the past decades has vastly improved our understanding of this phenomenon. However, in many practical applications, process engineering still lags developments in colloidal science thereby creating a gap in knowledge. While significant progress has been made in environmental process engineering research over the past decades, there is still a need to align these two inter-dependent fields of research more closely. This paper provides a comprehensive review of the flocculation mechanism from empirical and theoretical perspective, discuss its practical applications, and examines the need and direction of future research.
 Keywords
Floc stability;Hydrodynamics;Orthokinetic;Pelleting flocculation;Turbulence;
 Language
English
 Cited by
 References
1.
Pietsch W. Agglomeration processes: Phenomena, technologies, equipment. Weinheim: Wiley-VCH; 2002.

2.
Farinato RS, Huang S-Y, Hawkins P. Polyelectrolyte-assisted dewatering. In: Farinato RS, Dubin PL, eds. Colloid-Polymer Interactions: From Fundamentals to Practice. New York (NY): John Wiley & Sons; 1993. p. 3-50.

3.
Lick W. Sediment and contaminant transport in surface waters. Boca Raton (FL): CRC Press; 2008.

4.
Addai-Mensah J, Prestidge CA. Structure formation in dispersed systems. In: Dobias B, Stechemesser H, eds. Coagulation and Flocculation Second: Second Edition. Boca Raton (FL): CRC Press; 2005. p. 135-216.

5.
Lick W, Huang H, Jepsen R. Flocculation of fine-grained sediments due to differential settling. J. Geophys. Res. Oceans 1993;98:10279-10288. crossref(new window)

6.
Runkana V, Somasundaran P, Kapur PC. A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem. Eng. Sci. 2006;61:182-191. crossref(new window)

7.
Prat OO, Ducoste JJ. Simulation of flocculation in stirred vessels lagrangian versus eulerian. Chem. Eng. Res. Des. 2007;85:207-219. crossref(new window)

8.
Prat OP, Ducoste JJ. Modeling spatial distribution of floc size in turbulent processes using the quadrature method of moment and computational fluid dynamics. Chem. Eng. Sci. 2006;61:75-86. crossref(new window)

9.
Curran SJ, Black RA. Taylor-vortex bioreactors for enhanced mass transport. In: Chaudhuri J, Al-Rubeai M, eds. Bioreactors for tissue engineering: Principles, design and operation. dordrecht: Springer; 2005. p. 47-85.

10.
Wu W. Computational river dynamics. London: CRC Press; 2008.

11.
Sievers M, Stoll SM, Schroeder C, et al. Sludge dewatering and aggregate formation effects through taylor vortex assisted flocculation. Sep. Sci. Technol. 2008;43:1595-1609. crossref(new window)

12.
Tooby PF, Wick GL, Isaacs JD. The motion of a small sphere in a rotating velocity field: A possible mechanism for suspending particles in turbulence. J. Geophys. Res. 1977;82:2096-2100. crossref(new window)

13.
Taboada-Serrano P, Chin C-J, Yiacoumi S, Tsouris C. Modeling aggregation of colloidal particles. Curr. Opin. Colloid Interface Sci. 2005;10:123-132. crossref(new window)

14.
Biggs S. Aggregate structures and solid-liquid separation processes. KONA Powder Part J 2006;24:41-53. crossref(new window)

15.
Gregory J, Guibai L. Effects of dosing and mixing conditions on polymer flocculation of concentrated suspensions. Chem. Eng. Commun. 1991;108:3-21. crossref(new window)

16.
Yukselen MA, Gregory J. The effect of rapid mixing on the break-up and re-formation of flocs. J. Chem. Technol. Biotechnol. 2004;79:782-788. crossref(new window)

17.
Lee KE, Morad N, Teng TT, Poh BT. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chem. Eng. J. 2012;203:370-386. crossref(new window)

18.
Hjorth M, Christensen ML. Evaluation of methods to determine flocculation procedure for manure separation. Trans ASABE 2008;51:2093-2103. crossref(new window)

19.
Logan BE. Environmental transport processes. Hoboken (NJ): John Wiley & Sons; 2012.

20.
Milligan TG, Hill PS. A laboratory assessment of the relative importance of turbulence, particle composition, and concentration in limiting maximal floc size and settling behaviour. J. Sea Res. 1998;39:227-241. crossref(new window)

21.
Gregory J. Fundamentals of flocculation. Crit. Rev. Environ. Control 1989;19:185-230. crossref(new window)

22.
Popa I, Papastavrou G, Borkovec M. Charge regulation effects on electrostatic patch-charge attraction induced by adsorbed dendrimers. Phys. Chemsitry Chem. Phys. 2010;12:4863-4871. crossref(new window)

23.
Gregory J. The role of colloid interactions in solid-liquid separation. Water Sci. Technol. 1993;27:1-17. crossref(new window)

24.
Bratby J. Coagulation and flocculation in water and wastewater treatment. London: IWA Publishing; 2006.

25.
Bache DH, Gregory R. Flocs in water treatment. London: IWA Publishing; 2007.

26.
Benjamin MM, Lawler DF. Water quality engineering: Physical/chemical treatment processes. Hoboken (NJ): John Wiley & Sons; 2013.

27.
Partheniades E. Cohesive sediments in open channels: Properties, transport and applications. Oxford: Butterworth- Heinemann; 2009.

28.
Gregory J. Particles in water: Properties and processes. Boca Raton (FL): CRC Press; 2006.

29.
Shammas NK. Coagulation and flocculation. In: Wang LK, Hung Y-T, Shammas NK, eds. Physicochemical Treatment Processes. Totowa (NJ): Humana Press; 2005. p. 103-139.

30.
Marshall JS, Li S. Adhesive particle flow: A discrete-element approach. New York (NY): Cambridge University Press; 2014.

31.
Lebovka NI. Aggregation of charged colloidal particles. In: Muller M, ed. Polyelectrolyte complexes in the dispersed and solid state I. Heidelberg: Springer; 2013. p. 57-96.

32.
Nopens I. Modelling the activated sludge flocculation process: A population balance approach [dissertation]. Ghent: Univ. of Ghent; 2005.

33.
Moody G, Norman P. Chemical pre-treatment. In: Tarleton S, Wakeman R, eds. Solid-Liquid Separation: Scale-up of industrial equipment. Oxford: Elsevier; 2005. p. 38-81.

34.
Laskowski JS, Pugh RJ. Dispersions stability and dispersing agents. In: Laskowski JS, Ralston J, eds. Colloid chemistry in mineral processing. Amsterdam: Elsevier; 1992. p. 115-170.

35.
Lu S, Ding Y, Guo J. Kinetics of fine particle aggregation in turbulence. Adv. Colloid. Interface Sci. 1998;78:197-235. crossref(new window)

36.
Wilkinson KJ, Reinhardt A. Contrasting roles of natural organic matter on colloidal stabilization and flocculation. In: Liss SN, Droppo IG, Leppard GG, Milligan TG, eds. Flocculation in Natural and Engineered Environmental Systems. Boca Raton (FL): CRC Press; 2005. p. 143-170.

37.
Bagster DF. Aggregate behaviour in stirred vessels. In: Shamlou AP, ed. Processing of solid-liquid suspensions. Oxford: Butterworth-Heinemann; 1993. p. 26-58.

38.
Smith-Palmer T, Pelton R. Flocculation of particles. In: Somasundaran P, ed. Encyclopedia of Surface and Colloidal Science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 2584-2599.

39.
Schramm LL. Emulsions, foams, and suspensions. Weinheim: Wiley VCH; 2005.

40.
Gregory J. Stability and flocculation of suspensions. In: Shamlou AP, ed. Process. Solid-Liquid Suspensions. Oxford: Butterworth-Heinemann; 1993. p. 59-92.

41.
Grasso D, Subramaniam K, Butkus M, et al. A review of non-dlvo interactions in environmental colloidal systems. Rev. Environ. Sci. Biotechnol. 2002;1:17-38. crossref(new window)

42.
Gregory J. Flocculation of fine particles. In: Mavros P, Matis KA, eds. Innovations in floatation technology. Dordrecht: Springer; 1992. p. 101-124.

43.
Hanson AT, Cleasby JL. The effects of temperature on turbulent flocculation: Fluid dynamics and chemistry. J. Am. Water Works Assoc. 1990;82:56-73.

44.
Kissa E. Dispersions: Characterization, testing, and measurement. New York (NY): Marcel Dekker; 1999.

45.
Gregory J. Flocculation fundamentals. In: Tadros T, ed. Encyclopedia of colloid and interface science. Heidelberg: Springer; 2013. p. 459-491.

46.
Van Leussen W. Aggregation of particles, settling velocity of mud flocs-a review. In: Dronkers J, Van Leussen W, eds. Physical processes in estuaries. Heidelberg: Springer; 2011. p. 347-403.

47.
Thomas DN, Judd SJ, Fawcett N. Flocculation modelling: A review. Water Res. 1999;33:1579-1592. crossref(new window)

48.
Atkinson JF, Chakraborti RK, Benschoten JE. Effects of floc size and shape in particle aggregation. In: Liss SN, Droppo IG, Leppard GG, Milligan TG (eds) Flocculation in natural and engineered environmental systems. Boca Raton (FL): CRC Press; 2005. p. 95-120.

49.
Kramer TA, Clark MM. Incorporation of aggregate breakup in the simulation of orthokinetic coagulation. J. Colloid Interface Sci. 1999;216:116-126. crossref(new window)

50.
Lick W, Lick J, Ziegler CK. Flocculation and its effect of the vertical transport of fine-grained sediments. In: Hart BT, Sly PG, eds. Sediment/Water Interactions. Heidelberg: Springer; 1992. p. 1-16.

51.
Lick W, Lick J, Ziegler CK. Flocculation and its effect of the vertical transport of fine-grained sediments. Hydrobiologia 1992;235-236:1-16. crossref(new window)

52.
Lawler FD. Physical aspects of flocculation: From microscale to macroscale. Water Res. 1993;27:165-180.

53.
Kruster KA. The influence of turbulence on aggregation of small particles in agitated vessels [dissertation]. Eindhoven: Technical Univ. Eindhoven; 1991.

54.
Lick W, Lick J. Aggregation and disaggregation of fine-grained lake sediments. J. Gt. Lakes Res. 1998;14:514-523.

55.
Tsai C-H, Iacobellis S, Lick W. Flocculation of fine-grained lake sediments due to a uniform shear stress. J. Gt. Lakes Res. 1987;13:135-146. crossref(new window)

56.
Wang L, Marchisio DL, Vigil RD, Fox RO. CFD simulation of aggregation and breakage processes in laminar taylor-couette flow. J. Colloid Interface Sci. 2005;282:380-396. crossref(new window)

57.
Gregory J. Floc formation and floc structure. In: Newcombe G, Dixon D, eds. Interface science in drinking water treatment: Theory and applications. London: Academic Press; 2006. p. 25-43.

58.
Letterman RD, Amirtharajah A, O'Meila CR. Coagulation and flocculation. In: Edzwald J, ed. Water Quality & Treatment: A Handbook on Drinking Water. New York (NY): McGraw- Hill; 2010. p. 6.1-6.66.

59.
Bridgeman J, Jefferson B, Parsons SA. The development and application of CFD models for water treatment flocculators. Adv. Eng. Softw. 2010;41:99-109. crossref(new window)

60.
Bridgeman J, Jefferson B, Parsons S. Assessing floc strength using CFD to improve organics removal. Chem. Eng. Res. Des. 2008;86:941-950. crossref(new window)

61.
Camp TR, Stein PC. Velocity gradients and internal work in fluid motion. J. Boston Soc. Civ. Eng. 1943;30:219-237.

62.
Winterwerp JC. A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraul Res. 1998;36:309-326. crossref(new window)

63.
Zhu Z. Theory on orthokinetic flocculation of cohesive sediment: A review. J. Geosci. Environ. Prot. 2014;2:13-23.

64.
Bridgeman J, Jefferson B, Parsons SA. Computational fluid dynamics modelling of flocculation in water treatment: A review. Eng Appl. Comput. Fluid Mech. 2009;3:220-241.

65.
Korpijärvi J, Laine E, Ahlstedt H. Using CFD in the study of mixing in coagulation and flocculation. In: Hahn HH, Hoffmann E, Odegaard H (eds) Chemical Water Wastewater Treatment VI. Heidelberg: Springer; 2000. p. 89-99.

66.
Kramer TA, Clark MM. Influence of strain-rate on coagulation kinetics. J. Environ. Eng. 1997;123:444-452. crossref(new window)

67.
Muhle K. Floc stability in laminar and turbulent flow. In: Dobias B, ed. Coagulation and Flocculation: Theory and Applications. New York (NY): Marcel Dekker; p. 355-390.

68.
Svarovsky L. Solid-liquid separation. 4th ed. Woburn, MA: Butterworth-Heinemann; 2000.

69.
Ives KJ. Experiments in orthokinetic flocculation. In: Gregory J, ed. Solid-Liquid Separation. London: Ellis Horwood Ltd; 1984. p. 196-220.

70.
Belfort G (1986) Fluid mechanics and cross-flow membrane filtration. In: Muralidhara HS, ed. Advances in Solid-Liquid Separation. Columbus (OH): Battelle Press; 1986. p. 165-189.

71.
Spicer PT. Shear-induced aggregation-fragmentation: Mixing and aggregate morphology effects [dissertation]. Cincinnati: Univ. of Cincinnati; 1997.

72.
Falk L, Commenge J. Characterization of mixing and segregation in homogeneous flow systems. In: Hessel V, Renken A, Schouten JC, Yoshida J, eds. Handbook of Micro Reactors. Weinheim: John Wiley & Sons; 2009. p. 147-171.

73.
Concha F. Solid-liquid separation in the mining industry. Heidelberg: Springer; 2014.

74.
Farrow JB, Swift JD. A new procedure for assessing the performance of flocculants. Int. J. Miner Process 1996;46:263-275. crossref(new window)

75.
Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. Miner Eng. 2015;70:20-25. crossref(new window)

76.
Hendricks DW. Fundamentals of water treatment unit processes: Physical, chemical, and biological. Boca Raton (FL): CRC Press; 2011.

77.
Shamlou AP, Hooker-Titchener N. Turbulent aggregation and breakup of particles in liquids in stirred vessels. In: Shamlou AP, ed. Processing of solid-liquid suspensions. Oxford: Butterworth-Heinemann; 1993. p. 1-25.

78.
Hogg R. Flocculation and dewatering. Int. J. Miner Process 2000;58:223-236. crossref(new window)

79.
Bergenstahl B. Emulsions. In: Beckett ST, ed. Physico-chemical aspects of food processing. glasgow: Blackie Academic & Professional; 1995. p. 49-64.

80.
Son M, Hsu T. Flocculation model of cohesive sediment using variable fractal dimension. Environ. Fluid Mech. 2008;8:55-71. crossref(new window)

81.
Adachi Y, Kobayashi A, Kobayashi M. Structure of colloidal flocs in relation to the dynamic properties of unstable suspension. Int. J. Polym Sci. 2012;1-14.

82.
Tambo N. Optimization of flocculation in connection with various solid-liquid separation processes. In: Hahn H, Klute R, eds. Chemical water wastewater treatment. Heidelberg: Springer; 1990. p. 17-32.

83.
Yusa M, Suzuki H, Tanaka S. Separating liquids from solids by pellet flocculation. J. Am. Water Works Assoc. 1975;67:397-402.

84.
Yusa M, Igarashi C. Compaction of flocculated material. Water Res. 1984;18:811-816. crossref(new window)

85.
Higashitani K, Shibata T, Matsuno Y. Formation of pellet flocs from kaolin suspension and their properties. J. Chem. Eng. Jpn. 1987;20:152-157. crossref(new window)

86.
Yusa M, Gaudin AM. Formation of pellet-like flocs of kaolinite by polymer chains. Am. Ceram Soc. Bull. 1964;43:402-406.

87.
Yusa M. Mechanisms of pelleting flocculation. Int. J. Miner Process 1977;4:293-305. crossref(new window)

88.
Wang X, Jin P, Yuan H, et al. Pilot study of a fluidized- pellet-bed technique for simultaneous solid/liquid separation and sludge thickening in a sewage treatment plant. Water Sci. Technol. 2004;49:81-88.

89.
Gang Z, Ting-lin H, Chi T, et al. Settling behaviour of pellet flocs in pelleting flocculation process: Analysis through operational conditions. Water Sci. Technol. 2010;62:1346-1352. crossref(new window)

90.
Bahr S. Experimental studies of fundamental processes of pelleting flocculation [dissertation]. Cottbus: Brandenburg Univ. of Technology; 2006.

91.
Walaszek W. Investigation upon structure of pellet flocs against process performance as a tool to optimize sludge conditioning [dissertation]. Cottbus: Brandenburg Univ. of Technology; 2007.

92.
Panswad T, Polwanich S. Pilot plant application of pelletisation process on low-turbidity river water. J. Water Supply Res. Technol-AQUA 1998;47:236-244.

93.
Glasgow L. Physicochemical influences upon floc deformability, density, and permeability. In: 7th world congress of chemical engineering; 2005 Jul 10-14; Glasgow, Scotland.

94.
Gillberg L, Hanse B, Karlsson I, et al. About water treatment., Helsingborg: Kemira Kemwater; 2003.

95.
Yusa M. Pelleting flocculation in sludge conditioning - An overview. In: Attia YA, ed. Flocculation in Biotechnology and Separation Systems. Amsterdam: Elsevier; 1987. p. 755-763.

96.
Hemme A, Polte R, Ay P. Pelleting flocculation: The alternative to traditional sludge conditioning. Aufbereit-Tech 1995;36:226-235.

97.
Amirtharajah A, Tambo N. Mixing in water treatment. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in Coagulation and Flocculation. Denver (CO): American Water Works Association; 1991. p. 3-34.

98.
Higashitani K, Kubota T. Pelleting flocculation of colloidal latex particles. Powder Technol. 1987;51:61-69. crossref(new window)

99.
Vigdergauz VE, Gol'berg GY. Kinetics of mechanical floccule synaeresis. J. Min. Sci. 2012;48:347-353. crossref(new window)