JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Regional allocation of carbon emissions in China based on zero sum gains data envelopment analysis model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Environmental Engineering Research
  • Volume 21, Issue 1,  2016, pp.91-98
  • Publisher : Korean Society of Environmental Engineering
  • DOI : 10.4491/eer.2015.107
 Title & Authors
Regional allocation of carbon emissions in China based on zero sum gains data envelopment analysis model
Wen, Lei; Zhang, Er nv;
  PDF(new window)
 Abstract
Along with China's increasing share in global total emissions, there is a necessity for China to shoulder large emission-mitigating responsibility. The appropriate allocation of emission quotas can build up a solid foundation for future emissions trading. In views of originality, an optimized approach to determine emissions allocation efficiency based on the zero sum gains data envelopment analysis (ZSG-DEA) method is proposed. This paper uses a non-radial ZSG-DEA model to allocate emissions between different Chinese provinces by 2020 and treats as the undesirable output variable. Through the calculation of efficiency allocation amounts of provincial emissions, all provinces are on the ZSG-DEA efficiency frontier. The allocation results indicate that the cumulative optimal amounts of emissions in 2020 were higher than the actual amounts in 13 provinces, and lower in other 17 provinces, and show that different provinces have to shoulder different mitigation burdens in terms of emission reduction.
 Keywords
Carbon emission allocation; emissions;Data envelopment analysis;Zero sum gains;
 Language
English
 Cited by
 References
1.
Holmberg H, Tuomaala M, Haikonen T, Ahtila P. Allocation of fuel costs and $CO_2$-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill. Appl. Energ. 2012;93:614-623. crossref(new window)

2.
Wei YM, Wang L, Liao H, Wang K, Murty T, Yan J. Responsibility accounting in carbon allocation: a global perspective. Appl. Energ. 2015;130:122-133.

3.
Pan X, Teng F, Wang G. Sharing emission space at an equitable basis: allocation scheme based on the equal cumulative emission per capita principle. Appl. Energ. 2014;113: 1810-1818. crossref(new window)

4.
Morini M, Pinelli M, Spina PR, Venturini M. Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications. Appl. Energ. 2013;112:205-214. crossref(new window)

5.
Hasan KN, Saha TK, Chattopadhyay D, Eghbal M. Benefit-based expansion cost allocation for large scale remote renewable power integration into the Australian grid. Appl. Energ. 2014;113:836-847. crossref(new window)

6.
Wang LN, Ma D, Chen WY. Future $CO_2$ emissions allowances and inequality assessment under different allocation regimes. Energy Procedia 2014;61:523-526. crossref(new window)

7.
Levihn, F. $CO_2$ emissions accounting: Whether, how, and when different allocation methods should be used. Energy 2014;68:811-818. crossref(new window)

8.
Valipour M. A comprehensive study on irrigation management in Asia and Oceania. Arch. Agron. Soil. Sci. 2015;61:1247-1271. crossref(new window)

9.
Valipour M, Ahmadi MZ, Raeini-Sarjaz M, et al. Agricultural water management in the world during past half century. Arch. Agron. Soil. Sci. 2014;61:1-22.

10.
Valipour M, Valipour M. Future of the area equipped for irrigation. Arch. Agron. Soil. Sci. 2014;60:1641-1660.

11.
Fang L, Zhang CQ. Resource Allocation Based on the DEA Model. J. Oper. Res. Soc. 2008;59:1136-1141. crossref(new window)

12.
Cook WD, Kress M. Characterizing an equitable allocation of shared costs: A DEA approach. Eur. J. Oper. Res. 1999;119:652-661. crossref(new window)

13.
Cook WD, Zhu J. Allocation of shared costs among decision making units: A DEA approach. Comput. Oper. Res. 2005;32:2171-2178. crossref(new window)

14.
Lin R. Allocating fixed costs or resources and setting targets via data envelopment analysis. Appl. Math. Comput. 2011;217:6349-6358.

15.
Aparicio J, Monge JF, Pastor JT. New centralized resource allocation DEA models under constant returns to scale. Boletin de Estadistica e Investigacion Operativa 2012;28:110-130.

16.
Gomes EG, Lins MPE. Modelling undesirable outputs with zero sum gains data envelopment analysis models. J. Oper. Res. Soc. 2008;59:616-623. crossref(new window)

17.
Serrao A. Reallocating agricultural greenhouse gas emission in EU 15 countries. In: Proceeding of the Agricultural & Applied Economics Association; 2010.

18.
Färe R, Grosskopf S, Lovell CAK, Pasurka C. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989;71:90-98. crossref(new window)

19.
Arita Duasa, Rafia Afroz. Modeling environmental performance and economic development. IJTEF. 2013:384-387.

20.
Feng G, Serletis A. Undesirable outputs and a primal Divisia productivity index based on the directional output distance function. J. Econometrics 2014;183:135-146. crossref(new window)

21.
Färe R, Grosskopf S, Pasurka CA. Environmental production functions and environmental directional distance functions. Energy 2007;32:1055-1066. crossref(new window)

22.
Lozano S, Gutierrez E. Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and $CO_2$ emissions. Ecol. Econ. 2008;66:687-699. crossref(new window)

23.
Cheng L, Liu J. Modeling undesirable factors in the measurement of energy efficiency in China. In: Management and Service Science, 2009 (MASS 09). International Conference on; 2009. p. 1-4.

24.
Zhou Z, Liu W. DEA models with undesirable inputs, intermediates, and outputs. Data Envelopment Analysis Springer US 2015;415-446.

25.
Zhang B, Bi J, Fan Z, Yuan Z, Ge J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008;68:306-316. crossref(new window)

26.
Sueyoshi T, Goto M, Ueno T. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies. Energ. Policy 2010;38:1675-1688. crossref(new window)

27.
Sueyoshi T, Goto M. DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation. Energ. Econ. 2011;33:292-303. crossref(new window)

28.
Sueyoshi T, Goto M. Environmental assessment by DEA radial measurement: U.S. coal-fired power plants in ISO (Independent System Operator) and RTO (Regional Transmission Organization). Energ. Econ. 2012;34:663-676. crossref(new window)

29.
Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978;2:429-444. crossref(new window)

30.
Lins MPE, Gomes EG, Soares DM. Olympic ranking based on a zero sum gains DEA model. Eur. J. Oper. Res. 2003;148:312-322. crossref(new window)

31.
Zhou P, Ang BW, Han JY. Total factor carbon emission performance: A Malmquist index analysis. Energ. Econ. 2010;32:194-201. crossref(new window)

32.
Deng JL. Control problems of grey systems. Syst. & Contr. Lett. 1982;5:288-294.

33.
Shan HJ. Re-estimating the capital stock of China: 1952-2006. J. Quant. Tech. Econ. 2008;10:17-32 [in Chinese].

34.
Wang MK. Key issue in China's development (2006-2020). China Development Press: Beijing; 2005.

35.
UNDESA. World population prospects: The 2008 revision. United Nations: New York; 2009.

36.
Lin BQ, Sun CW. How can China achieve its carbon emission reduction target while sustaining economic growth? Chinese Social Science Press 2011.