JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries
Choi, Jaecheol; Son, Bongki; Ryou, Myung-Hyun; Kim, Sang Hern; Ko, Jang Myoun; Lee, Yong Min;
  PDF(new window)
 Abstract
The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g , respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.
 Keywords
Electrode density;Electrode thickness;Electrode loading;Electrode porosity;Electrochemical performance;Lithium-ion batteries;
 Language
English
 Cited by
1.
리튬 이차전지 음극용 CNT/Co3O4 나노복합체의 전기화학적 특성,윤대호;박용준;

전기화학회지, 2014. vol.17. 3, pp.187-192 crossref(new window)
1.
Design optimization of LiNi 0.6 Co 0.2 Mn 0.2 O 2 /graphite lithium-ion cells based on simulation and experimental data, Journal of Power Sources, 2016, 319, 147  crossref(new windwow)
2.
A comparative investigation of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes, RSC Advances, 2015, 5, 115, 95073  crossref(new windwow)
3.
Electrochemical Cycle-Life Characterization of High Energy Lithium-Ion Cells with Thick Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 and Graphite Electrodes, Journal of The Electrochemical Society, 2017, 164, 6, A1037  crossref(new windwow)
4.
Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO 4 lithium-ion batteries, Journal of Power Sources, 2017, 365, 257  crossref(new windwow)
5.
Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries, Journal of Power Sources, 2013, 243, 641  crossref(new windwow)
6.
Effects of Capacity Ratios between Anode and Cathode on Electrochemical Properties for Lithium Polymer Batteries, Electrochimica Acta, 2015, 155, 431  crossref(new windwow)
7.
Effects of electrolyte-volume-to-electrode-area ratio on redox behaviors of graphite anodes for lithium-ion batteries, Electrochimica Acta, 2014, 141, 367  crossref(new windwow)
8.
Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrodes, ACS Applied Materials & Interfaces, 2016, 8, 36, 23688  crossref(new windwow)
9.
Future generations of cathode materials: an automotive industry perspective, Journal of Materials Chemistry A, 2015, 3, 13, 6709  crossref(new windwow)
10.
Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters, Scientific Reports, 2016, 6, 1  crossref(new windwow)
11.
Effect of LiFePO 4 cathode density and thickness on electrochemical performance of lithium metal polymer batteries prepared by in situ thermal polymerization, Electrochimica Acta, 2015, 154, 149  crossref(new windwow)
12.
Micro-structure evolution and control of lithium-ion battery electrode laminate, Journal of Energy Storage, 2017, 14, 82  crossref(new windwow)
 References
1.
M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, and J. W. Choi, Adv. Energy Mater., 2, 645, (2012). crossref(new window)

2.
E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, Nano lett., 9, 1045, (2009). crossref(new window)

3.
J. M. Tarascon and M. Armand, Nature, 414, 359, (2001). crossref(new window)

4.
S. H. Kang and M. M. Tackeray, Electrochemistry Communications, 11, 748 (2009). crossref(new window)

5.
K. J. Hong and Y. K. Sun, Journal of Power Sources, 109, 427 (2002). crossref(new window)

6.
Y. M. Lee, J. Y. Lee, H. T. Shim, J. K. Lee, and J. K. Park, J. Electrochem. Soc., 154, A515, (2007). crossref(new window)

7.
L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, Nano Lett., 9, 3370, (2009). crossref(new window)

8.
J. Shim and K. A. Striebel, Journal of Power Sources, 119-121, 934, (2003). crossref(new window)

9.
J. Shim and K. A. Striebel, Journal of Power Sources, 130, 247, (2004). crossref(new window)

10.
K. A. Striebel, A. Sierra, J. Shim, C. W. Wang, and A. M. Sastry, Journal of Power Sources, 134, 241, (2004). crossref(new window)

11.
H. Zheng, G. Liu, X. Song, P. Ridgway, S. Xun, and V. S. Battaglia, J. Electrochem. Soc., 157, A1060, (2010). crossref(new window)

12.
H. Zheng, L. Tan, G. Liu, X. Song, and V. S. Battaglia, Journal of Power Sources, 208, 52, (2012). crossref(new window)

13.
H. Zheng, J. Li, X. Song, G. Liu, and V. S. Battaglia, Electrochimica Acta, 71, 258, (2012). crossref(new window)

14.
Y. H. Chen, C. W. Wang, X. Zhang, and A. M. Sastry, Journal of Power Sources, 195, 2851, (2010). crossref(new window)

15.
S. Yu, Y. Chung, M. S. Song, J. H. Nam, and W. I. Cho, J. Appl Electrochem., 42, 443, (2012). crossref(new window)

16.
G. Liu, H. Zheng, A. S. Simens, A. M. Minor, X. Song, and V. S. Battaglia, J. Electrochem. Soc., 154, A1129, (2007). crossref(new window)