Advanced SearchSearch Tips
Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials
Kim, Sang Woo; Cho, Kuk Young;
  PDF(new window)
With increasing interest in flexible electronic devices and wearable appliances, flexible lithium ion batteries are the most attractive candidates for flexible energy sources. During the last decade, many different kinds of flexible batteries have been reported. Although research of flexible lithium ion batteries is in its earlier stages, we have found that developing components that satisfy performance conditions under external deformation stress is a critical key to the success of flexible energy sources. Among the major components of the lithium ion battery, electrodes, which are connected to the current collectors, are gaining the most attention owing to their rigid and brittle character. In this mini review, we discuss candidate materials for current collectors and the previous strategies implemented for flexible electrode fabrication.
flexible lithium secondary battery;carbon;conducting polymer;thin metal;electrode;
 Cited by
Surface-modified Li[Ni0.8Co0.15Al0.05]O2 Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating,;;

Journal of Electrochemical Science and Technology, 2016. vol.7. 4, pp.263-268 crossref(new window)
Electrochemical Performance of Carbon Coated LiMn2O4 Nanoparticles using a New Carbon Source,;;

Journal of Electrochemical Science and Technology, 2016. vol.7. 2, pp.139-145 crossref(new window)
A Review of Inactive Materials and Components of Flexible Lithium-Ion Batteries, Advanced Sustainable Systems, 2017, 1, 11, 1700061  crossref(new windwow)
Review of Local In Situ Probing Techniques for the Interfaces of Lithium-Ion and Lithium-Oxygen Batteries, Energy Technology, 2016, 4, 12, 1472  crossref(new windwow)
Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries, Nanomaterials, 2017, 7, 6, 126  crossref(new windwow)
Practical Li-Ion Battery Assembly with One-Dimensional Active Materials, The Journal of Physical Chemistry Letters, 2017, 8, 17, 4031  crossref(new windwow)
Li 4 Ti 5 O 12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries, Nano Energy, 2017, 39, 140  crossref(new windwow)
Electrochemical Performance of Carbon Coated LiMn2O4Nanoparticles using a New Carbon Source, Journal of Electrochemical Science and Technology, 2016, 7, 2, 139  crossref(new windwow)
Thin Coating of Microporous Organic Network Makes a Big Difference: Sustainability Issue of Ni Electrodes on the PET Textile for Flexible Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 2017, 9, 42, 36936  crossref(new windwow)
Al-incorporation into Li 7 La 3 Zr 2 O 12 solid electrolyte keeping stabilized cubic phase for all-solid-state Li batteries, Journal of Energy Chemistry, 2017  crossref(new windwow)
Surface-modified Li[Ni0.8Co0.15Al0.05]O2Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating, Journal of Electrochemical Science and Technology, 2016, 7, 4, 263  crossref(new windwow)
S.-Y. Lee, K.-H. Choi, W.-S. Choi, Y. H. Kwon, H.-R. Jung, H.-C. Shin, J. Y. Kim, Energy Environ. Sci., 6, 2414 (2013). crossref(new window)

Y. Hu, X. Sun, J. Mater. Chem. A, 2, 10712 (2014). crossref(new window)

K. Xie, B. Wei, Adv. Mater., 26, 3592 (2014). crossref(new window)

X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, G. Shen, Adv. Mater., 26, 4763 (2014). crossref(new window)

Q. Sa, Y. Wang, J. Power Sources, 208, 46 (2012). crossref(new window)

Y.-L. Kim, Y.-K. Sun, S.-M. Lee, Electrochim. Acta, 53, 4500 (2008). crossref(new window)

G.-W. Lee, J. H. Ryu, S. M. Oh, J. Korean Electrochem. Soc., 13, 157 (2010). crossref(new window)

J. Zhu, J. Feng, Z. Guo, RSC Adv., 4, 57671 (2014). crossref(new window)

C. Iwakura, Y. Fukumoto, H. Inoue, S. Ohashi, S. Kobayashi, H. Tada, M. Abe, J. Power Sources, 68, 301 (1997). crossref(new window)

M. S. Yazici, D. Krassowski, J. Prakash, J. Power Sources, 141, 171 (2005). crossref(new window)

K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, K. Jiang, S. Fan, Adv. Funct. Mater., 23, 846 (2013). crossref(new window)

H. Lin, W. Weng, J. Ren, L. Qiu, Z. Zhang, P. Chen, X. Chen, J. Deng, Y. Wang, H. Peng, Adv. Mater., 26, 1217 (2014). crossref(new window)

L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 106, 21490 (2009). crossref(new window)

L. Hu, H. Wu, F. La Mantia, Y. Yang, Y. Cui, ACS Nano, 4, 5843 (2010). crossref(new window)

S.-L. Chou, Y. Zhao, J.-Z. Wang, Z.-X. Chen, H.-K. Liu, S.-X. Dou, J. Phys. Chem. C, 114, 15862 (2010).

X. Li, J. Yang, Y. Hu, J. Wang, Y. Li, M. Cai, R. Li, X. Sun, J. Mater. Chem., 22, 18847 (2012). crossref(new window)

A. Goyal, A. L. M. Reddy, P. M. Ajayan, Small, 7, 1709 (2011). crossref(new window)

X. Jia, C. Yan, Z. Chen, R. Wang, Q. Zhang, L. Guo, F. Wei, Y. Lu, Chem. Commun., 47, 9669 (2011). crossref(new window)

G. Zhou, D.-W. Wang, F. Li, P.-X. Hou, L. Yin, C. Liu, G. Q. Lu, I. R. Gentle, H.-M. Cheng, Energy Environ. Sci., 5, 8901 (2012). crossref(new window)

H. Gwon, H.-S. Kim, K. U. Lee, D.-H. Seo, Y. C. Park, Y.-S. Lee, B. T. Ahn, K. Kang, Energy Environ. Sci., 4, 1277 (2011). crossref(new window)

G. Ning, C. Xu, Y. Cao, X. Zhu, Z. Jiang, Z. Fan, W. Qian, F. Wei, J. Gao, J. Mater. Chem. A, 1, 408 (2013). crossref(new window)

J.-Z. Wang, C. Zhong, S.-L. Chou, H.-K. Liu, Electrochem. Commun., 12, 1467 (2010). crossref(new window)

J. Liang, Y. Zhao , L. Guo, L. Li, ACS Appl. Mater. Interfaces, 4, 5742 (2012). crossref(new window)

J. Jin, Z. Wen, G. Ma, Y. Lu, Y. Cui, M. Wu, X. Liang, X. Wu, RSC Adv., 3, 2558 (2013). crossref(new window)

X. Huang, B. Sun, K. Li, S. Chen, G. Wang, J. Mater. Chem. A, 1, 13484 (2013). crossref(new window)

C. Uthaisar, V. Barone, Nano Lett., 10, 2838 (2010). crossref(new window)

X. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung, ACS Nano, 5, 8739 (2011). crossref(new window)

N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Proc. Natl. Acad. Sci. U.S.A., 109, 17360 (2012). crossref(new window)

G. A. Snook, P. Kao, A. S. Best, J. Power Sources, 196, 1 (2011). crossref(new window)

K. Naoi, M. Morita, Electrochem. Soc. Interface, 17, 44 (2008).

J.-Z. Wang, S.-L. Chou, J. Chen, S.-Y. Chew, G.-X. Wang, K. Konstantinov, J. Wu, S.-X. Dou, H. K. Liu, Electrochem. Commun., 10, 1781 (2008). crossref(new window)

L. Noerochim, J.-Z. Wang, D. Wexler, M. M. Rahman, J. Chen, H.-K. Liu, J. Mater. Chem., 22, 11159 (2012). crossref(new window)

J. Chen, Y. Liu, A. I. Minett, C. Lynam, J. Wang, G. G. Wallace, Chem. Mater., 19, 3595 (2007). crossref(new window)

L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater., 23, 3751 (2011).

M.-H. Park, M. Noh, S. Lee, M. Ko, S. Chae, S. Sim, S. Choi, H. Kim, H. Nam, S. Park, J. Cho, Nano Lett., 14, 4083 (2014). crossref(new window)

J.-Y. Choi, D. J. Lee, Y. M. Lee, Y.-G. Lee, K. M. Kim, J.-K. Park, K. Y. Cho, Adv. Funct. Mater., 23, 2108 (2013). crossref(new window)

S. W. Kim, J. H. Yun, B. Son, Y.-G. Lee, K. M. Kim, Y. M. Lee, K. Y. Cho, Adv. Mater., 26, 2977 (2014). crossref(new window)

S. Song, S. W. Kim, D. J. Lee, Y.-G. Lee, K. M. Kim, C.-H. Kim, J.-K. Park, Y. M. Lee, K. Y. Cho, ACS Appl. Mater. Interfaces, 6, 11544 (2014). crossref(new window)