JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrochemical and Safety Performances of Polyimide Nano fiber-based Nonwoven Separators for Li-ion Batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrochemical and Safety Performances of Polyimide Nano fiber-based Nonwoven Separators for Li-ion Batteries
Kim, Yeon-Joo; Lee, Sang-Min; Kim, Seok Hong; Kim, Hyun-Soo;
  PDF(new window)
 Abstract
In this study, cell performance and thermal stability of lithium-ion cells with a polyimide (PI) separator are investigated. In comparison to conventional polyethylene (PE) separator, the PI separator exhibits distinct advantage in microporous structure, leading to superior reliability of the cell. The cells with PI separator exhibit good cell performances as same as the cells with PE separator, but their reliability was superior to the cell with PE separator. Especially in the hot-box test at 150 and 180℃, PI separator showed a contraction percentage close to 0% at 150℃, while the PE separator showed a contraction percentage greater than 10% in both width and length. Therefore, the PI separator can be the promising candidate for separators of the next generation of lithium-ion battery.
 Keywords
polyimide (PI);polyethylene (PE);electrospun fibrous membrane;lithium battery;separator;thermal shrinkage;
 Language
English
 Cited by
1.
Electrochemical Performance of Carbon Coated LiMn2O4Nanoparticles using a New Carbon Source, Journal of Electrochemical Science and Technology, 2016, 7, 2, 139  crossref(new windwow)
2.
Polyimide fibers prepared by a dry-spinning process: Enhanced mechanical properties of fibers containing biphenyl units, Journal of Applied Polymer Science, 2016, 133, 31  crossref(new windwow)
3.
Electrospun polyimide nanofibers and their applications, Progress in Polymer Science, 2016, 61, 67  crossref(new windwow)
4.
The Evolution of Lithium-Ion Cell Thermal Safety with Aging Examined in a Battery Testing Calorimeter, Batteries, 2016, 2, 2, 12  crossref(new windwow)
 References
1.
F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature, 394, 456 (1998). crossref(new window)

2.
G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, J. Power Sources, 77, 34 (1999). crossref(new window)

3.
B.L. Luan, G. Campbell, M. Gauthier, X.Y. Liu, I. Davidson, J. Nagata, M. Lepinay, F. Bernier, S. Argue, ECS Transactions, 25, 59 (2010).

4.
R.J. Brodd, H.M. Friend, J.C. Nardi, Lithium Ion Battery Technology, ITE-JEC Press, 1995.

5.
U. von Sacken, E. Nodwell, A. Sundher, and J.R. Dahn, Solid State Ionics, 69, 284 (1994). crossref(new window)

6.
U. von Sacken, E. Nodwell, A. Sundher, and J. Dahn, Solid State Ionics, 69, 284 (1994). crossref(new window)

7.
S. Tobishima and J. Yamaki, J. Power Sources, 81, 882 (1999).

8.
J. Yamaki, in: M. Wakihara, O. Yamamoto (Eds.), Lithium Ion Batteries, 83, Kodansha and Wiley-VCH, Tokyo, Japan (1998).

9.
J. Cho, Y. Kim, T. Kim, and B. Park, Chem. Mater., 13, 18 (2001). crossref(new window)

10.
H. Kweon, S. Kim, and D. Park, J. Power Sources, 88, 255 (2000). crossref(new window)

11.
R. Leising, M. Palazzo, E. Takeuchi, and K. Takeuchi, J. Electrochem. Soc., 148, A838 (2001). crossref(new window)

12.
A. Dey, J. Electrochem. Soc., 118, 1547 (1971). crossref(new window)

13.
A. Christie, S. Lilley, E. Staunton, Y. Andreev, and P. Bruce, Nature, 433, 50 (2005). crossref(new window)

14.
A. M. Stephan, Europ. Polymer J., 42, 21 (2006). crossref(new window)

15.
K. Morigaki, N. Kabuto, and K. Haraguchi, Matsushita Electric Industrial, US Patent 5597659, issued Jan. 28, 1997.

16.
K. Abraham, M. Alamgir, and D. Hoffman, J. Electrochem. Soc., 142, 683 (1995). crossref(new window)

17.
D. Kim, K. Noh, J. Chun, S. Kim, and J. Ko, Solid State Ionics, 144, 329 (2001). crossref(new window)

18.
Y. Wang, J. Travas-Sejdic, and R. Steiner, Solid State Ionics, 148, 443 (2002).

19.
F. Ooms, E. Kelder, J. Schoonman, N. Gerrits, J. Smedinga, and G. Callis, J. Power Sources, 97, 598 (2001).

20.
Y. Miaoa, G. Zhub, H. Houc, Y. Xiab, and T. Liua, J. Power Sources, 226, 82 (2013). crossref(new window)

21.
L. Carnell, E. Siochi, N. Holloway, R. Stephens, C Rhim, L. Niklason, and R. Clark, Macromolecules, 5345, 14 (2008).

22.
D. Chen, T. Liu, X. Zhou, W. Tjiu, and H. Hou, J. Phys. Chem., B, 113, 9741 (2009).

23.
D. Chen, R. Wang, W. Tjiu, and T. Liu, Compos. Sci. Technol., 71, 1556 (2011). crossref(new window)

24.
Y. Kim, H. Kim, C. Doh, S. Kim, and S. Lee. J. Power Sources, 244, 196 (2013). crossref(new window)

25.
P. Ma and R. Zhang, J. Biomedical Mater. Resear., 46, 60 (1999). crossref(new window)

26.
D. Reneker and I. Chun, Nanotechnology, 7, 216 (1996). crossref(new window)

27.
Y. Kim, H. Kim, C. Doha, S. Kim, and S. Lee, J. Power Sources, 244, 196 (2013). crossref(new window)