JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrocatalytic Reduction of CO2 by Copper (II) Cyclam Derivatives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrocatalytic Reduction of CO2 by Copper (II) Cyclam Derivatives
Kang, Sung-Jin; Dale, Ajit; Sarkar, Swarbhanu; Yoo, Jeongsoo; Lee, Hochun;
  PDF(new window)
 Abstract
This study investigates Cu(II) complexes of cyclam, propylene cross-bridged cyclam (PCB-cyclam), and propylene cross-bridged cyclam diacetate (PCB-TE2A) as homogeneous electrocatalysts for CO2 reduction in comparison with Ni(II)-cyclam. It is found that Cu(II)-cyclam can catalyze CO2 reduction at the potential close to its thermodynamic value (0.75 V vs. Ag/AgCl) in tris-HCl buffer (pH 8.45) on a glassy carbon electrode. Cu(II)-cyclam, however, suffers from severe demetalation due to the insufficient stability of Cu(I)-cyclam. Cu(II)-PCB-cyclam and Cu(II)-PCB-TE2A are revealed to exhibit much less demetalation behavior, but poor CO2 reduction activities as well. The inferior electrocatalytic ability of Cu(II)-PCB-cyclam is ascribed to its redox potential that is too high for CO2 reduction, and that of Cu(II)-PCB-TE2A to the steric hindrance preventing facile contact with CO2 molecules. This study suggests that in addition to the redox potential and chemical stability, the stereochemical aspect has to be considered in designing efficient electrocatalysts for CO2 reduction.
 Keywords
Electrocatalyst;Carbon dioxide reduction;Cyclam;Copper;Cyclic voltammetry;
 Language
English
 Cited by
1.
Bulk pH contribution to CO/HCOO− production from CO2 on oxygen-evacuated Cu2O electrocatalyst, Catalysis Today, 2016  crossref(new windwow)
 References
1.
C. Costentin, M. Robert and J.-M. Saveant, Chem. Soc. Rev., 42, 2423 (2013). crossref(new window)

2.
R Lim, M Xie, M. Sk, J.-M. Lee, A. Fisher,X. Wang and K. Lim, Catalysis Today, 233, 169 (2014). crossref(new window)

3.
J. Song and W. Shin, J. Korean Electrochem. Soc., 12, 131 (2009) crossref(new window)

4.
M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, J. Chem. Soc., Chem. Commun, 1315 (1984).

5.
M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986). crossref(new window)

6.
M. Fujihira, Y. Hirata and K. Suga, J. Electroanal. Chem., 292, 199 (1990). crossref(new window)

7.
J.D. Froehlich and C.P. Kubiak, Inog. Chem., 51, 3932(2012). crossref(new window)

8.
J. Song, Y. Kim, M. Lim, H. Lee, J. Lee and W. Shin, ChemSusChem, 4, 587 (2011). crossref(new window)

9.
J. Schneider, H. Jia, K. Kobiro, D.E. Cabelli, J.T. Muckerman and E. Fujita, Energy Environ. Sci., 5, 9502 (2012). crossref(new window)

10.
J. Song, E.L. Klein, F. Neese and S. Ye, Inog. Chem., 53, 7500 (2014). crossref(new window)

11.
B. Fisher and R. Eisenberg, J. Am. Chem. Soc., 102, 7363 (1980). crossref(new window)

12.
P. Zanello, R. Seeber, A. Cinquantini, G. Mazzocchin and L. Fabbrizzi, J. Chem. Soc., Dalton Trans., 893 (1982).

13.
L. Fabbrizzi, A. Poggi and P. Zanello, J. Chem. Soc., Dalton Trans., 2193 (1983).

14.
P.V. Bernhardt, J.M. Harrodield, D.C.R. Hockless, and A.M. Sargeson, Inog. Chem., 33, 5659 (1994). crossref(new window)

15.
G. Nirmala, A.K. Rahiman, S. Sreedaran, R. Jegadeesh, N. Raaman and V. Narayanan, Spectrochimica Acta Part A, 77, 92 (2010). crossref(new window)

16.
K. Barefield and F. Wagner, Inorg. Chem., 12, 2435 (1973). crossref(new window)

17.
D.N. Pandya, A.V. Dale, J.Y. Kim, H. Lee, Y.S. Ha, G. I. An, J. Yoo, Bioconjugate Chem., 23, 330 (2012). crossref(new window)