Advanced SearchSearch Tips
Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries
Ahn, Ja-Hwa; Eom, Ji-Yong; Kim, Jong-Huy; Kim, Hye Won; Lee, Byung Cheol; Kim, Sung-Soo;
  PDF(new window)
We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.
;nanoparticle;electron beam irradiation;anode material;Li-ion battery;
 Cited by
Enhanced electrocatalytic activity of three-dimensionally-ordered macroporous La0.6Sr0.4CoO3−δperovskite oxide for Li–O2battery application, RSC Adv., 2016, 6, 38, 32212  crossref(new windwow)
Feasibility Study of a Planar-type Sodium-Nickel Chloride Battery, Bulletin of the Korean Chemical Society, 2016, 37, 5, 695  crossref(new windwow)
A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4, 366 (2005). crossref(new window)

P. Kubiak, T. Froschl, N. Husing, U. Hormann, U. Kaiser, R. Schiller, C.K. Weiss, K. Landfester, and M. Wohlfahrt-Mehrens, TiO2 anatase nanoparticle networks: Synthesis, structure, and electrochemical performance. Small, 7, 1690 (2011). crossref(new window)

D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv Mater, 18, 2807 (2006). crossref(new window)

G.F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. Tirado, and P. Knauth, Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem Mater, 21, 63 (2009). crossref(new window)

W.H. Ryu, D.H. Nam, Y.S. Ko, R.H. Kim, and H.S. Kwon, Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim Acta, 61, 19 (2012). crossref(new window)

P. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew Chem, Int Ed., 47, 2930 (2008). crossref(new window)

D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol-gel type syntheses and its applications. J. Mater Sci., 46, 3669 (2011). crossref(new window)

T. Zhu, J. Li, and Q. Wu, Construction of TiO2 hierarchical nanostructures from nanocrystals and their photocatalytic properties. ACS Appl. Mater Interfaces, 3, 3448 (2011). crossref(new window)

J.C. Hulteen and C.R. Martin, A general template-based method for the preparation of nanomaterials. J. Mater Chem., 7, 1075 (1997). crossref(new window)

H. Hofmeister, S. Thiel, M. Dubiel, and E. Schurig, Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation. Appl Phys Lett., 70, 1694 (1997). crossref(new window)

Z.W. Pan, Z.R. Dai, and Z.L Wang, Lead oxid enanobelts and phase transformation induced by electron beam irradiation. Appl Phys Lett., 80, 309 (2002). crossref(new window)

S.H. Kim, Y.S. Choi, K. Kang, and S.I. Yang, Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM. J. Alloys and Compounds, 427, 330 (2007). crossref(new window)

M. Kim, J.Y. Shon, Y.C. Nho, T.W. Lee, and J.H. Park, Positive effects of E-beam irradiation in inorganic particle based separators for lithium-ion battery. J. Electrochem. Soc., 157, A31 (2010). crossref(new window)

J.M. Ko, B.G. Min, D.W. Kim, K.S. Ryu, K.M. Kim, Y.G. Lee, and S.H. Chang, Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate. Electrochim. Acta., 50, 367 (2004). crossref(new window)

J.Y. Lee, Y.M. Lee, B. Bhattacharya, Y.C. Nho, and J.K. Park, Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta., 54, 4312 (2009). crossref(new window)

J. Jiang, G. Oberdorster, and P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart Res., 11, 77 (2009). crossref(new window)

C. Watson, I. Janik, T. Zhuang, O. Charvatova, R.J. Woods, and J.S. Sharp, Pulsed electron beam water radiolysis for submicrosecond hydroxyl radical protein footprinting. Anal Chem., 81, 2496 (2009). crossref(new window)

K. Lin, W.J. Cooper, M.G. Nickelsen, C.N. Kurucz, and T.D. Waite, Decomposition of aqueous solutions of phenol using high energy electron beam irradiation a large scale study. Appl. Radiat lsot., 46, 1307 (1995). crossref(new window)

N. Sakai, R. Wang, A. Fujishima, T. Watanabe, and K. Hashimoto, Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces. Langmuir, 14, 5918 (1998). crossref(new window)

M.E. Simonsen, Z. Li, and E.G. Sogaard, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol-gel TiO2 film. Appl Surf Sci., 255, 8054 (2009). crossref(new window)

J.I. Langford and A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl Cryst, 11, 102 (1978). crossref(new window)