Advanced SearchSearch Tips
Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity
Islam, Mobinul; Jeong, Min-Gi; Ghani, Faizan; Jung, Hun-Gi;
  PDF(new window)
The micro emulsion method has been successfully used for preparing perovskite LaCoO3 with uniform, fine-shaped nanoparticles showing high activity as electro catalysts in oxygen reduction reactions (ORRs). They are, therefore, promising candidates for the air-cathode in metal-air rechargeable batteries. Since the activity of a catalyst is highly dependent on its specific surface area, nanoparticles of the perovskite catalyst are desirable for catalyzing both oxygen reduction and evolution reactions. Herein, LaCoO3 powder was also prepared by sol-gel method for comparison, with a broad particle distribution and high agglomeration. The electro catalytic properties of LaCoO3 and LaCoO3-carbon Super P mixture layers toward the ORR were studied comparatively using the rotating disk electrode technique in 0.1 M KOH electrolyte to elucidate the effect of carbon Super P. Koutecky-Levich theory was applied to acquire the overall electron transfer number (n) during the ORR, calculated to be ~3.74 for the LaCoO3-Super P mixture, quite close to the theoretical value (4.0), and ~2.7 for carbon-free LaCoO3. A synergistic effect toward the ORR is observed when carbon is present in the LaCoO3 layer. Carbon is assumed to be more than an additive, enhancing the electronic conductivity of the oxide catalyst. It is suggested that ORRs, catalyzed by the LaCoO3-Super P mixture, are dominated by a 2+2-electron transfer pathway to form the final, hydroxyl ion product.
Rotating disk electrode;Perovskite oxide;Oxygen reduction reaction;Oxygen evolution reaction;Microemulsion;
 Cited by
H.M. Zhang, Y. Shimizu, Y. Teraoka, N. Miura and N. Yamazoe, J. Catal., 121, 432 (1990). crossref(new window)

H. Tanaka and M. Misono, Curr. Opin. Solid State. Mater. Sci., 5, 381 (2001). crossref(new window)

W.G. Hardin, D.A. Slanac, X. Wang, S. Dai, K.P. Johnston and K.J. Stevenson, J. Phys. Chem. Lett., 4, 1254 (2013). crossref(new window)

Y. Matsumoto, S. Yamada, T. Nishida and E. Sato, J. Electrochem Soc., 127, 2360 (1980). crossref(new window)

R.A. Rincon, E. Ventosa, F. Tietz, J. Masa, S. Seisel, V. Kuznetsov and W. Schuhmann, ChemPhysChem., 15, 2810 (2014). crossref(new window)

R.J. Bell, G.J. Millar and J. Drennan, Solid State Ionics, 131, 211 (2000). crossref(new window)

S. Royer, F. Be´rube´ and S. Kaliaguine, Appl. Catal. A: Gen., 282, 273 (2005). crossref(new window)

L. Predoana, B. Malic, M. Kosec, M. Carata, M. Caldararu and M. Zaharescu, J. Europ. Cera. Soc., 27, 4407 (2007). crossref(new window)

J. Kirchnerova, M. Alifanti and B. Delmon, Appl. Catal. A: Gen., 231, 65 (2002). crossref(new window)

M. Popa and M. Kakihana, Solid State Ionics, 151, 251 (2002). crossref(new window)

Y. Wu-Laitaoluo and W. Liu, J. Chem. Sci., 119, 237 (2007). crossref(new window)

L. Armelao, G. Bandoli, D. Barreca, M. Bettinelli, G. Bottaro and A. Caneschi, Surf. Interf. Anal., 34, 112 (2002). crossref(new window)

S. Kaliaguine, A. Van Neste, V. Szabo, J.E. Gallot, M. Bassir and R. Muzychuk, Appl. Catal. A: Gen., 209, 345 (2001). crossref(new window)

M.M. Natile, E. Ugel, C. Maccato and A. Glisenti, Appl. Catal. B: Environ., 72, 351 (2007). crossref(new window)

Y. Matsumoto. T. Sasaki and J. Hombo, Inorg. Chem., 31, 738 (1992). crossref(new window)

J.P. Dacquin, C. Lancelot, C. Dujardin, P.D. Costa, G. Djega-Mariadassou, P. Beaunier, S. Kaliaguine , S. Vaudreuil , S. Royer and P. Granger, Appl Catal. B: Environ., 91, 596 (2009). crossref(new window)

M.A. Malik, M.Y. Wani and M.A. Hashim, Arabian J. Chemistry, 5, 397 (2012). crossref(new window)

J. Eastoe, M.J. Hollamby and L.Hudon, Adv. Colloid Interface Sci., 128-130, 5 (2006). crossref(new window)

T. Ahmad, R. Chopra, K.V. Ramanujachary, S.E. Loand and A.K. Ganguli, Solid State Sci., 7, 891 (2005). crossref(new window)

V. Neburchilov, H. Wang, J.J. Martin and W. Qu, J. Power Sources, 195, 1271 (2010). crossref(new window)

F. Cheng and J. Chen, Chem. Soc. Rev., 41, 2172 (2012). crossref(new window)

Y. Lee, J. Suntivich, K.J. May, E.E. Perry and Y. Shao-Horn, J. Phys. Chem. Lett., 3, 399 (2012).

J. Sunarso, A.A.J. Torriero, W. Zhou, P.C. Howlett and M. Forsyth, J. Phys. Chem. C, 116, 5827 (2012). crossref(new window)

J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough and Y. Shao-Horn, Nat. Chem., 3, 546 (2011). crossref(new window)

X.X. Li, W. Qu, J. Jun Zhang and H. Wang, J. Electrochemical Soc., 158 (5), A597 (2011). crossref(new window)

F. Gloaguen, F. Andolfatto, R. Durand and P. Ozil, J. Appl. Electrochem., 24, 863 (1994). crossref(new window)

V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall: Englewood Cliffs, NJ (1962).

T. Poux, F.S. Napolskiy, T. Dintzer, G. Kéranguéven, S.Y. Istomin, G.A. Tsirlina, E.V. Antipov and E.R. Savinova, Catal. Today, 189, 83 (2012). crossref(new window)

G. Thornton, B.C. Tofield and A.W. Hewat, J. Solid State Chem., 61, 301 (1986). crossref(new window)

H. Roggendorf and H. Schmidt, Int. Soc. Optics & Photo., 1128, 40 (1989).

M.A. Lopez-Quintela, Curr. Opin. Colloid & Interface Sci., 8, 137 (2003) crossref(new window)

M. Shao, A. Peles and K. Shoemaker, Nano Lett., 11, 3714 (2011). crossref(new window)

J. Seo, D. Cha, K. Takanabe, J. Kubota and K. Domen, Phys. Chem. Phys. Chem., 16, 895 (2014). crossref(new window)