Advanced SearchSearch Tips
Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles
Dutta, Gorachand; Yang, Haesik;
  PDF(new window)
Although the time dependences of the electrocatalytic activities of Pt and Pd nanoparticles during electrochemical operations have been widely studied, the time dependences under nonpolarized conditions have never been investigated in depth. This study reports the changes in the electrocatalytic activities of Pt and Pd nanoparticles with aging in air and in solution. Pt (or Pd) nanoparticle-modified electrodes are obtained by adsorbing citrate-stabilized Pt (or Pd) nanoparticles on amine-modified indium-tin oxide (ITO) electrodes, or by electrodeposition of Pt (or Pd) nanoparticles on ITO electrodes. The electrocatalytic activities of freshly prepared Pt and Pd nanoparticles in the oxygen reduction reaction slowly decrease with aging. The electrocatalytic activities decrease more slowly in solution than in air. An increase in surface contamination may cause electrocatalytic deactivation during aging. The electrocatalytic activities of long-aged Pt (or Pd) nanoparticles are significantly enhanced and recovered by NaBH4 treatment.
Pt nanoparticles;Pd nanoparticles;electrocatalytic activity;oxygen reduction reaction;aging;
 Cited by
F. Godínez-Salomón, E. Arce-Estrada and M. Hallen-López, Int. J. Electrochem. Sci., 7, 2566 (2012).

A. Datta, S. Kapri and S. Bhattacharyya, Green Chem., 17, 1572 (2015). crossref(new window)

M. K. Debe, Nature, 43, 486 (2012).

A. Sáez, J. Solla-Gullón, E. Expósito, A. Aldaz and V. Montiel, Int. J. Electrochem. Sci., 8, 7030 (2013).

H. J. Park and S. H. Hur J. Korean Electrochem. Soc., 17, 201 (2014). crossref(new window)

E. Spain, H. McArdle, T. E. Keyes and R.-J. Forster, Analyst, 138, 4340 (2013). crossref(new window)

S. H. Lim, J. Wei, J. Lin, Q. Li and J. K. You, Biosens. Bioelectron., 20, 2341 (2005). crossref(new window)

M. Rashid, T.-S. Jun and Y. S. Kim, J. Korean Electrochem. Soc., 17, 18 (2014). crossref(new window)

V. T. T. Ho, C.-J. Pan, J. Rick, W.-N. Su and B.-J. Hwang, J. Am. Chem. Soc., 133, 11716 (2011). crossref(new window)

S. Y. Ang and D. A. Walsh, Appl. Catal., B, 98, 49 (2010). crossref(new window)

V.-D. Dao and H.-S. Choi, Electrochim. Acta, 93, 287 (2013). crossref(new window)

R. C. Cerritos, M. Guerra-Balcázar, R. F. Ramírez, J. Ledesma-Garcia and L. G. Arriaga, Materials, 5, 1686 (2012). crossref(new window)

B. N. Wanjala, B. Fang, J. Luo, Y. Chen, J. Yin, M. H. Engelhard, R. Loukrakpam and C.-J Zhong, J. Am. Chem. Soc., 133, 12714 (2011). crossref(new window)

J. Bao, M. Dou, H. Liu, F. Wang, J. Liu, Z. Li and J. Ji, ACS Appl. Mater. Interfaces, 7, 15223 (2015). crossref(new window)

S. Garbarino, A. Pereira, C. Hamel, E´. Irissou, M. Chaker and D. Guay, J. Phys. Chem. C, 114, 2980 (2010).

G. He, Y. Song, X. Kang and S. Chen, Electrochim. Acta, 94, 98 (2013). crossref(new window)

J. Das, H. Kim, K. Jo, K. H Park, S. Jon, K. Lee and H. Yang, Chem. Commun., 6394 (2009).

H. J. Kang, S. Patra, J. Das, A. Aziz, J. Jo and H. Yang, Electrochem. Commun., 12, 1245 (2010). crossref(new window)

G. Dutta, K. Jo, H. Lee, B. Kim, H. Y. Woo and H. Yang, J. Electroanal. Chem., 675, 41 (2012). crossref(new window)

G. Dutta, A.-M. Jiaul and H. Yang, Electrochim. Acta, 141, 319 (2014). crossref(new window)

M. Huang, Y. Shao, X. Sun, H. Chen, B. Liu, and S. Dong, Langmuir, 21, 323 (2005). crossref(new window)

M. S. El-Deab, F. Kitamura and T. Oshsaka, J. Electrochem. Soc., 160, F651 (2013). crossref(new window)