JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics of Sr0.92Y0.08TiO3-δ Anode in Humidified MethaneFuel for Intermediate Temperature Solid Oxide Fuel Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Sr0.92Y0.08TiO3-δ Anode in Humidified MethaneFuel for Intermediate Temperature Solid Oxide Fuel Cells
Park, Eun Kyung; Yun, Jeong Woo;
  PDF(new window)
 Abstract
Sr0.92Y0.08TiO3-δ (SYT) was investigated as an alternative anode in humidified CH4 fuel for SOFCs at low temperatures (650 ℃-750 ℃) and compared with the conventional Ni/yttria-stabilized zirconia (Ni/YSZ) anode. The goal of the study was to directly use a hydrocarbon fuel in a SOFC without a reforming process. The cell performance of the SYT anode was relatively low compared with that of the Ni/YSZ anode because of the poor electrochemical catalytic activity of SYT. In the presence of CH4 fuel, however, the cell performance with the SYT anode decreased by 20%, in contrast to the 58% decrease in the case of the Ni/YSZ anode. The severe degradation of cell performance observed with the Ni/YSZ anode was caused by carbon deposition that resulted from methane thermal cracking. Carbon was much less detected in the SYT anode due to the catalytic oxidation. Otherwise, a significant amount of bulk carbon was detected in the Ni/YSZ anode.
 Keywords
Solid oxide fuel cell;Sr0.92Y0.08TiO3-δ;methane;alternative anode;carbon deposition;
 Language
English
 Cited by
 References
1.
A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal and J. Vohs, Nature mater., 3, 17 (2004). crossref(new window)

2.
R. M. Ormerod, Chem. Soc. Rev., 32, 17 (2003). crossref(new window)

3.
K. Huang and J. B. Goodenough, Solid oxide fuel cell technology: Principles, Performance and Operations, Elesevier (2009).

4.
J. M. Lee, Y. G. Kim, S. J. Lee, H. S. Kim, S. P. Yoon, S. W. Nam, S. D. Yoon and J. W. Yun, J. Appl. Electrochem., 44, 581 (2014). crossref(new window)

5.
J. B. Goodenough and Y.-H. Huang, J. Power Sources, 173, 1 (2007). crossref(new window)

6.
S. Hui and A. Petric, J. European Ceramic Society, 22, 1673 (2002). crossref(new window)

7.
X. Huang, H. Zhao, W. Shen, W. Qiu and W. Wu, J. Physics and Chemistry of Solids, 67, 2609 (2006). crossref(new window)

8.
S. Hui and A. Petric, J. Electrochem. Soc. 149(1), J1 (2002). crossref(new window)

9.
V. Vasechko, B. Huang, Q. Ma, F. Tietz and J. Malzbender, J. Eur. Ceram. Soc., 34, 3749 (2014). crossref(new window)

10.
G. Xiao and F. Chen, Frontiers in Energy research, 2(18), 1 (2014).

11.
N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya and T. Iwata, J. Mater. Sci., 25, 4531 (1990). crossref(new window)

12.
M. Mori and N. M Sammes, Solid State Ionics, 146, 301 (2002). crossref(new window)

13.
H. S. Kim, S. P. Yoon, J. W. Yun, S. A. Song, S.-C. Jang, S. W. Nam and Y.-G. Shul, International Journal of hydrogen energy, 37, 16130 (2012). crossref(new window)

14.
H. S. Kim, G. S. Kim, J. W. Yun, H. C. Ham, J. H. Jang, J. H. Han, S. W. Nam, Y.-G. Shul and S. P. Yoon, Ceramics International, 40, 8237 (2014). crossref(new window)

15.
Q. X. Fu, S. B. Mi, E. Wessel and F. Tietz, J. Eur. Ceram. Soc., 28, 811 (2008). crossref(new window)

16.
M. García-Gabaldóna, V. Pérez-Herranz, E. Sánchezb and S. Mestre , J. Memb. Sci., 280, 536 (2006). crossref(new window)

17.
M. Y. Yoon, R.-H. Song, D.-R. Shin and H. J. Hwang, J. Korean Powder Metall. Inst., 17(1), 59 (2010). crossref(new window)

18.
Q. Fu, F. Tietz, D. Sebold, S. Tao and J. T. S. Irvine, J. Power Sources, 171, 663 (2007). crossref(new window)

19.
H. He, Y. Huang, J. M. Vohs and R. J. Gorte, Solid State Ionics, 175, 171 (2004). crossref(new window)

20.
J. W. Yun, H. C. Ham, H. S. Kim, S. A. Song, S. W. Nam and S. P. Yoon, J. Electrochem. Soc., 160, F153 (2013).

21.
J. M. Lee, Y. G. Kim, S. J. Lee, H. S. Kim, S. P. Yoon, S. W. Nam, S. D. Yoon and J. W. Yun, J. Appl. Electrochem, 44, 581 (2014) crossref(new window)