JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Enhanced Efficiency of Nanoporous-layer-covered TiO2 NanotubeArrays for Front Illuminated Dye-sensitized Solar Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Enhanced Efficiency of Nanoporous-layer-covered TiO2 NanotubeArrays for Front Illuminated Dye-sensitized Solar Cells
Kang, Soon-Hyung; Lee, Soo-Yong; Kim, Jae-Hong; Choi, Chel-Jong; Kim, Hyunsoo; Ahn, Kwang-Soon;
  PDF(new window)
 Abstract
Nanoporous-layer-covered TiO2 nanotube arrays (Type II TNTs) were fabricated by two-step electrochemical anodization. For comparison, conventional TiO2 nanotube arrays (Type I TNTs) were also prepared by one-step electrochemical anodization. Types I and II TNTs were detached by selective etching and then transferred successfully to a transparent F-doped SnO2 (FTO) substrate by a sol-gel process. Both FTO/Types I and II TNTs allowed front side illumination to exhibit incident photon-to-current efficiencies (IPCEs) in the long wavelength region of 300 to 750 nm without the absorption of light by the iodine-containing electrolyte. The Type II TNT exhibited longer electron lifetime and faster charge transfer than the Type I TNT because of its relatively fewer defect states. These beneficial effects lead to a high overall energy conversion efficiency (5.32 %) of the resulting dye-sensitized solar cell.
 Keywords
dye-sensitized solar cell;nanotube array;electron lifetime;charge transfer;front side illumination;
 Language
English
 Cited by
 References
1.
B. O’Regan and M. Grätzel, Nature, 353, 737 (1991). crossref(new window)

2.
J. Kwon and J. H. Park, J. Electrochem. Sci. Technol., 4, 89 (2013). crossref(new window)

3.
M. Grätzel, Nature, 414, 338 (2001). crossref(new window)

4.
J.-H. Park, J.-Y. Kim, J.-H. Kim, C.-J. Choi, H. S. Kim, Y.-E. Sung and K.-S. Ahn, J. Power Sources, 196, 8904 (2011). crossref(new window)

5.
G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett., 6, 215 (2006). crossref(new window)

6.
Y.-C. Nah, I. Paramasivam and P. Schmuki, Chem Phys Chem, 11, 2698 (2010).

7.
S. S. Park, Y. S. Won, Y. C. Choi, and J. H. Kim, Energy & Fuels, 23, 3732 (2009). crossref(new window)

8.
S.-J. Seo, H.-J. Cha, Y. S. Kang and M.-S. Kang, Electrochimica Acta, 145, 217 (2014). crossref(new window)

9.
J.-Y. Kim, K.-H. Lee, J. Shin, S. H. Park, J. S. Kang, K. S. Han, M. M. Sung, N. Pinna and Y.-E. Sung, Nanotechnology, 25, 504003 (2014). crossref(new window)

10.
S. W. Jung, J.-H. Park, W. Lee, J.-H. Kim, H. Kim, C.-J. Choi and K.-S. Ahn, J. Appl. Phys., 110, 054301 (2011). crossref(new window)

11.
Q. Chen and D. Xu, J. Phys. Chem. C, 113, 6310 (2009). crossref(new window)

12.
J. Choi, S.-H. Park, Y. S. Kwon, J. Lim, I. Y. Song and T. Park, Chem. Commun., 48, 8748 (2012). crossref(new window)

13.
J. H. Park, T.-W. Lee, and M. G. Kang, Chem. Commun., 2867 (2008).

14.
D. Wang, B. Yu, C. Wang, F. Zhou and W. Liu, Adv. Mater., 21, 1964 (2009). crossref(new window)

15.
S. W. Jung, S.-Y. Lee, M.-A. Park, J.-H. Kim, S.-H. Kang, H. Kim and C.-J. Choi, Mol. Cryst. Liq. Cryst., 598, 144 (2014). crossref(new window)

16.
A. Zaban, M. Greenshtein and J. Bisquert, ChemPhysChem, 4, 859 (2003). crossref(new window)

17.
G. Zhu, Z. Cheng, T. Lv, L. Pan, Q. Zhao and Z. Sun, Nanoscale, 2, 1229 (2010). crossref(new window)

18.
B. C. O’Regan, J. R. Durrant, P. M. Sommeling and N. J. Bakker, J. Phys. Chem. C, 111, 14001 (2007).