Advanced SearchSearch Tips
Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti
Auguste, Appia Foffie Thiery; Quand-Meme, Gnamba Corneil; Ollo, Kambire; Mohamed, Berte; Sahi placide, Sadia; Ibrahima, Sanogo; Lassine, Ouattara;
  PDF(new window)
In this work, a ruthenium dioxide electrode has been prepared by thermal decomposition at 400 ℃ then used for the oxidation of commercial amoxicillin. The physical characterization showed that RuO2 electrode presents a mud cracked structure. Its electrochemical characterization has revealed an increase of the voltammetric charge in acid electrolyte compared to neutral electrolyte indicating the importance of protons in its surface redox processes. The voltammetric study of the oxidation of amoxicillin has been investigated. It has been obtained that the oxidation of amoxicillin is controlled by both adsorption and diffusion processes. Moreover, the oxidation of amoxicillin occurs via direct and indirect processes in free or electrolyte containing chlorides. Through preparative electrolysis, enhancement of amoxicillin oxidation was observed in the presence of chloride where the amoxicillin degradation yield reached more than 50 % compared to less than 5% in the absence of chlorides. Spectrophotometric investigations have revealed the degradation of intermediates absorbing at 350 nm.
amoxicillin;oxidation;perchlorate;electrolysis;current density;ruthenium dioxide;
 Cited by
K. M. Yao, B. S. Métongo, A. Trokourey and Y. Bokra, J. Océanol. Limnol. Abidjan, IV, 1 (2007).

P. L. A. Guillaume, K. H. Honoré, T. Albert and L. Ouattara, Int. J. Pure Appl. Sci. Technol., 14(1), 33 (2013).

N. Oturan, J. Wu, H. Zhang, V. K. Sharma and M. A. Oturan, Appl. Catal. B: Environmental, 140-141, 92 (2013). crossref(new window)

I. Sirés and E. Brillas, Environment International, 40, 212 (2012). crossref(new window)

J. R. Domínguez, T. González, P. Palo and J. Sánchez-Martín, Chem. Eng. J., 162, 1012 (2010). crossref(new window)

P. Wang, P.-S. Yap and T.-T. Lim, Appl. Catal. A. Gen., 399, 252 (2011). crossref(new window)

H. Lin, J. Niu, J. Xu, Y. Li and Y. Pan, Electrochim. Acta, 97, 167 (2013). crossref(new window)

I. Tantis, M. Antonopoulou, I. Konstantinou and P. Lianos, J. Photochem. Photobiol. A Chem., 317, 100 (2016). crossref(new window)

M. Solak, M. Kílíç, Y. Hüseyin and A. Sencan, J. Hazard. Mater., 172, 345 (2009). crossref(new window)

I. R. Bautitz and R. F. P. Noguiera, J. Photochem. Photobiol. A Chem., 187, 33 (2007). crossref(new window)

J. J. Pignatello, E. Oliveros and A. MacKay, Crit. Rev. Environ. Sci. Technol., 36, 1 (2006). crossref(new window)

W. Hua, E. R. Bennett and R. J. Letcher, Water Research, 40, 2259 (2006). crossref(new window)

R. Hernandez, M. Zappi, J. Colucci and R. Jones, J. Hazard. Mater., 92, 33 (2002). crossref(new window)

E. A. Serna-Galvis, J. Silva-Agrego, A. L. Giraldo, O. A. Florez and R. A. Torres-Palma, Chem. Eng. J., 284, 953 (2016). crossref(new window)

J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen and M. A. Oturan, Chemosphere, 87, 614 (2012). crossref(new window)

A. Rubio-Clemente, R. A. Torres-Palma and G. A. Penuela, Sci. Total Environ., 478, 201 (2014). crossref(new window)

F. L. Souza, J. M. Aquino, D. W. Miwa, M. A. Rodrigo and A. J. Motheo, J. Environ. Chem. Eng., 2, 811 (2014). crossref(new window)

R. Manoharan and J. B. Goodenough, Electrochim. Acta, 36, 19 (1991). crossref(new window)

A. V. Rosario, L. O. S. Bulhões and E. C. Pereira, J. Power Sources, 158, 795 (2006). crossref(new window)

A. Kapalka, G. Fóti and C. Comninellis, Electrochem. Commun., 10, 607 (2008). crossref(new window)