Advanced SearchSearch Tips
An experimental approach to study the function of mitochondria in cardiomyopathy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 48, Issue 10,  2015, pp.541-548
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2015.48.10.153
 Title & Authors
An experimental approach to study the function of mitochondria in cardiomyopathy
Chung, Youn Wook; Kang, Seok-Min;
  PDF(new window)
Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy.
 Cited by
Mitochondria as pharmacological targets in Down syndrome, Free Radical Biology and Medicine, 2017  crossref(new windwow)
Walters AM, Porter GA Jr. and Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111, 1222-1236 crossref(new window)

Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 125, e2-e220 crossref(new window)

Ambrosio G, Zweier JL, Duilio C et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268, 18532-18541

Lucas DT and Szweda LI (1998) Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci U S A 95, 510-514 crossref(new window)

Murphy E and Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88, 581-609 crossref(new window)

Brenner C and Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111, 1237-1247 crossref(new window)

Kwong JQ and Molkentin JD (2015) Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 21, 206-214 crossref(new window)

Huss JM and Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115, 547-555 crossref(new window)

Towbin JA and Bowles NE (2002) The failing heart. Nature 415, 227-233 crossref(new window)

Cecchi F, Tomberli B and Olivotto I (2012) Clinical and molecular classification of cardiomyopathies. Glob Cardiol Sci Pract 2012, 4 crossref(new window)

Ozawa T (1994) Mitochondrial cardiomyopathy. Herz 19, 105-118, 125

Stanley WC and Hoppel CL (2000) Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovasc Res 45, 805-806 crossref(new window)

Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J and Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol 33, 1065-1089 crossref(new window)

Ikeda Y and Ross J Jr. (2000) Models of dilated cardiomyopathy in the mouse and the hamster. Curr Opin Cardiol 15, 197-201 crossref(new window)

Benjamin IJ and Schneider MD (2005) Learning from failure: congestive heart failure in the postgenomic age. J Clin Invest 115, 495-499 crossref(new window)

Recchia FA and Lionetti V (2007) Animal models of dilated cardiomyopathy for translational research. Vet Res Commun 31 Suppl 1, 35-41 crossref(new window)

Wallace DC and Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12-31 crossref(new window)

Winnik S, Auwerx J, Sinclair DA and Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J [Epub ahead of print]

Ryu D, Jo YS, Lo Sasso G et al (2014) A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab 20, 856-869 crossref(new window)

Roh JI, Cheong C, Sung YH et al (2014) Perturbation of NCOA6 leads to dilated cardiomyopathy. Cell Rep 8, 991-998 crossref(new window)

Lauritzen KH, Kleppa L, Aronsen JM et al (2015) Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. Am J Physiol Heart Circ Physiol 309, H434-449 crossref(new window)

Sligh JE, Levy SE, Waymire KG et al (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 97, 14461-14466 crossref(new window)

Baba A, Yoshikawa T, Fukuda Y et al (2004) Autoantibodies against M2-muscarinic acetylcholine receptors: new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J 25, 1108-1115 crossref(new window)

Fu LX, Magnusson Y, Bergh CH et al (1993) Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest 91, 1964-1968 crossref(new window)

Fu ML, Schulze W, Wallukat G, Hjalmarson A and Hoebeke J (1995) Functional epitope analysis of the second extracellular loop of the human heart muscarinic acetylcholine receptor. J Mol Cell Cardiol 27, 427-436 crossref(new window)

Zhang S, He Z, Wang J et al (2015) Mitochondrial Ultrastructural Alterations and Declined M2 Receptor Density Were Involved in Cardiac Dysfunction in Rats after Long Term Treatment with Autoantibodies against M2 Muscarinic Receptor. PLoS One 10, e0129563 crossref(new window)

Yoshizawa A, Nagai S, Baba Y et al (2012) Autoimmunity against M(2)muscarinic acetylcholine receptor induces myocarditis and leads to a dilated cardiomyopathy-like phenotype. Eur J Immunol 42, 1152-1163 crossref(new window)

Palmer JW, Tandler B and Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252, 8731-8739

Shin G, Sugiyama M, Shoji T, Kagiyama A, Sato H and Ogura R (1989) Detection of mitochondrial membrane damages in myocardial ischemia with ESR spin labeling technique. J Mol Cell Cardiol 21, 1029-1036 crossref(new window)

Palmer JW, Tandler B and Hoppel CL (1985) Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. Arch Biochem Biophys 236, 691-702 crossref(new window)

Hoppel CL, Tandler B, Parland W, Turkaly JS and Albers LD (1982) Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J Biol Chem 257, 1540-1548

D'Angelo DD, Sakata Y, Lorenz JN et al (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 94, 8121-8126 crossref(new window)

Sakata Y, Hoit BD, Liggett SB, Walsh RA and Dorn GW 2nd (1998) Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation 97, 1488-1495 crossref(new window)

Yussman MG, Toyokawa T, Odley A et al (2002) Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8, 725-730 crossref(new window)

Syed F, Odley A, Hahn HS et al (2004) Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res 95, 1200-1206 crossref(new window)

Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN and Dorn GW 2nd (2008) Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117, 396-404 crossref(new window)

Dorn GW 2nd (2010) Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res 3, 374-383 crossref(new window)

Archer SL (2013) Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369, 2236-2251 crossref(new window)

Song M, Mihara K, Chen Y, Scorrano L and Dorn GW 2nd (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21, 273-285 crossref(new window)

Chen Y and Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471-475 crossref(new window)

Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS and Dorn GW 2nd (2014) Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res 115, 348-353 crossref(new window)

Chen Y, Liu Y and Dorn GW 2nd (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109, 1327-1331 crossref(new window)

Papanicolaou KN, Kikuchi R, Ngoh GA et al (2012) Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res 111, 1012-1026 crossref(new window)

Chen L, Liu T, Tran A et al (2012) OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J Am Heart Assoc 1, e003012 crossref(new window)

Song M and Dorn GW 2nd (2015) Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab 21, 195-205 crossref(new window)

Kubli DA and Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111, 1208-1221 crossref(new window)

Delbridge LM, Mellor KM, Taylor DJ and Gottlieb RA (2015) Myocardial autophagic energy stress responses--macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 308, H1194-1204 crossref(new window)

Shirihai OS, Song M and Dorn GW 2nd (2015) How Mitochondrial Dynamism Orchestrates Mitophagy. Circ Res 116, 1835-1849 crossref(new window)

Ashrafian H, Docherty L, Leo V et al (2010) A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet 6, e1001000 crossref(new window)

Gray MW, Burger G and Lang BF (1999) Mitochondrial evolution. Science 283, 1476-1481 crossref(new window)

Fosslien E (2003) Review: Mitochondrial medicine--cardiomyopathy caused by defective oxidative phosphorylation. Ann Clin Lab Sci 33, 371-395

Wang J, Wilhelmsson H, Graff C et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21, 133-137 crossref(new window)

Li H, Wang J, Wilhelmsson H et al (2000) Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci U S A 97, 3467-3472 crossref(new window)

Wisneski JA, Gertz EW, Neese RA and Mayr M (1987) Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest 79, 359-366 crossref(new window)

Stanley WC and Chandler MP (2002) Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 7, 115-130 crossref(new window)

Stanley WC, Lopaschuk GD, Hall JL and McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33, 243-257 crossref(new window)

Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR and Wallace DC (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16, 226-234 crossref(new window)

Engel AG (1999) Myofibrillar myopathy. Ann Neurol 46, 681-683 crossref(new window)

Paulin D, Huet A, Khanamyrian L and Xue Z (2004) Desminopathies in muscle disease. J Pathol 204, 418-427 crossref(new window)

Vicart P, Caron A, Guicheney P et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20, 92-95 crossref(new window)

Wang X, Osinska H, Dorn GW 2nd et al (2001) Mouse model of desmin-related cardiomyopathy. Circulation 103, 2402-2407 crossref(new window)

Maloyan A, Sanbe A, Osinska H et al (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112, 3451-3461 crossref(new window)

Badorff C, Lee GH, Lamphear BJ et al (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5, 320-326 crossref(new window)

Feng J, Yan J, Buzin CH, Towbin JA and Sommer SS (2002) Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab 77, 119-126 crossref(new window)

Vatta M, Stetson SJ, Perez-Verdia A et al (2002) Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet 359, 936-941 crossref(new window)

Khairallah M, Khairallah R, Young ME, Dyck JR, Petrof BJ and Des Rosiers C (2007) Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43, 119-129 crossref(new window)

Nakayama H, Chen X, Baines CP et al (2007) Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117, 2431-2444 crossref(new window)

Hajjar RJ, Liao R, Young JB, Fuleihan F, Glass MG and Gwathmey JK (1993) Pathophysiological and biochemical characterisation of an avian model of dilated cardiomyopathy: comparison to findings in human dilated cardiomyopathy. Cardiovasc Res 27, 2212-2221 crossref(new window)

Zhang M, Wei J, Shan H et al (2013) Calreticulin-STAT3 signaling pathway modulates mitochondrial function in a rat model of furazolidone-induced dilated cardiomyopathy. PLoS One 8, e66779 crossref(new window)

Armstrong PW, Stopps TP, Ford SE and de Bold AJ (1986) Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation 74, 1075-1084 crossref(new window)

Spinale FG, Hendrick DA, Crawford FA, Smith AC, Hamada Y and Carabello BA (1990) Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am J Physiol 259, H218-229

Ide T, Tsutsui H, Kinugawa S et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85, 357-363 crossref(new window)

Melov S, Coskun P, Patel M et al (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci U S A 96, 846-851 crossref(new window)

Lefrak EA, Pitha J, Rosenheim S and Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32, 302-314 crossref(new window)

Gilladoga AC, Manuel C, Tan CT, Wollner N, Sternberg SS and Murphy ML (1976) The cardiotoxicity of adriamycin and daunomycin in children. Cancer 37, 1070-1078 crossref(new window)

Takemura G and Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49, 330-352 crossref(new window)

Sawyer DB (2013) Anthracyclines and heart failure. N Engl J Med 368, 1154-1156 crossref(new window)

van der Vijgh WJ, van Velzen D, van der Poort JS et al (1988) Morphometric study of myocardial changes during doxorubicin-induced cardiomyopathy in mice. Eur J Cancer Clin Oncol 24, 1603-1608 crossref(new window)

Shenasa H, Calderone A, Vermeulen M et al (1990) Chronic doxorubicin induced cardiomyopathy in rabbits: mechanical, intracellular action potential, and beta adrenergic characteristics of the failing myocardium. Cardiovasc Res 24, 591-604 crossref(new window)

Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J and Walker UA (2003) Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation 108, 2423-2429 crossref(new window)

Kerr DS (2010) Treatment of mitochondrial electron transport chain disorders: a review of clinical trials over the past decade. Mol Genet Metab 99, 246-255 crossref(new window)

Gurlek A, Tutar E, Akcil E et al (2000) The effects of L-carnitine treatment on left ventricular function and erythrocyte superoxide dismutase activity in patients with ischemic cardiomyopathy. Eur J Heart Fail 2, 189-193 crossref(new window)

Singh RB, Niaz MA, Rastogi V and Rastogi SS (1998) Coenzyme Q in cardiovascular disease. J Assoc Physicians India 46, 299-306

Buyse GM, Van der Mieren G, Erb M et al (2009) Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. Eur Heart J 30, 116-124 crossref(new window)

Lagedrost SJ, Sutton MS, Cohen MS et al (2011) Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J 161, 639-645 e631 crossref(new window)

Rizos I (2000) Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. Am Heart J 139, S120-123 crossref(new window)

Abozguia K, Elliott P, McKenna W et al (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122, 1562-1569 crossref(new window)

Lionetti V, Linke A, Chandler MP et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66, 454-461 crossref(new window)

Bersin RM, Wolfe C, Kwasman M et al (1994) Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 23, 1617-1624 crossref(new window)

Lewis JF, DaCosta M, Wargowich T and Stacpoole P (1998) Effects of dichloroacetate in patients with congestive heart failure. Clin Cardiol 21, 888-892 crossref(new window)

Arakawa K, Kudo T, Ikawa M et al (2010) Abnormal myocardial energy-production state in mitochondrial cardiomyopathy and acute response to L-arginine infusion. C-11 acetate kinetics revealed by positron emission tomography. Circ J 74, 2702-2711 crossref(new window)

Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B and Walker UA (2007) Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol 151, 771-778 crossref(new window)

Konorev EA, Kennedy MC and Kalyanaraman B (1999) Cell-permeable superoxide dismutase and glutathione peroxidase mimetics afford superior protection against doxorubicin-induced cardiotoxicity: the role of reactive oxygen and nitrogen intermediates. Arch Biochem Biophys 368, 421-428 crossref(new window)

Fisher PW, Salloum F, Das A, Hyder H and Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111, 1601-1610 crossref(new window)

Wagner JA, Weisman HF, Snowman AM, Reynolds IJ, Weisfeldt ML and Snyder SH (1989) Alterations in calcium antagonist receptors and sodium-calcium exchange in cardiomyopathic hamster tissues. Circ Res 65, 205-214 crossref(new window)

Li Y, Huang TT, Carlson EJ et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11, 376-381 crossref(new window)

Shipp JC, Opie LH and Challoner D (1961) Fatty acid and glucose metabolism in the perfused heart. Nature 189, 1018-1019 crossref(new window)